首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

2.
We examine the inbreeding load for adult life span and mortality rates of two seed beetle species, Callosobruchus maculatus and Stator limbatus. Inbreeding load differs substantially between males and females in both study populations of C. maculatus--life span of inbred females was 9-13% shorter than the life span of outbred females, whereas the life span of inbred males did not differ from the life span of outbred males. The effect of inbreeding on female life span was largely due to an increase in the slope of the mortality curve. In contrast, inbreeding had only a small effect on the life span of S. limbatus--life spans of inbred beetles were approximately 5% shorter than those of outbred beetles, and there was no difference in inbreeding load between the sexes. The inbreeding load for mean life span was approximately 0.4-0.6 lethal equivalents per haploid gamete for female C. maculatus and approximately 0.2-0.3 for both males and females of S. limbatus, all within the range of estimates commonly obtained for Drosophila. However, contrary to the predictions of mutation-accumulation models, inbreeding load for loci affecting mortality rates did not increase with age in either species, despite an effect of inbreeding on the initial rate of increase in mortality. This was because mortality rates decelerated with age and converged to a mortality plateau for both outbred and inbred beetles.  相似文献   

3.
The present study describes the age and growth of the leatherjacket Meuschenia scaber, a common Australasian monacanthid and valued by‐catch of the inshore bottom trawl fishery in New Zealand. Age was determined from the sagittal otoliths of 651 individuals collected between July 2014 and March 2016 in the Hauraki Gulf of New Zealand. Otolith sections revealed alternating opaque and translucent zones and edge‐type analysis demonstrated that these are deposited annually. Meuschenia scaber displayed rapid initial growth, with both males and females reaching maturity in 1–2 years and 50% of both sexes matured at 1·5 years. Maximum age differed substantially between the sexes, at 9·8 years for males and 17·1 years for females. Growth rate was similar between sexes, although males reached greater mass at age than females in the early part of the lifespan. The length–mass relationship differed significantly between the sexes, with males displaying negative allometric growth and females isometric growth. Female condition was highest in July, declined in August with the onset of spawning and showed a slight peak in January and February, immediately following the spawning season. This study substantially extends the maximum longevity recorded for monacanthids, although males had much shorter lifespans and higher mortality, than females.  相似文献   

4.
Lou SL  Jin L  Liu YH  Mi ZP  Tao G  Tang YM  Liao WB 《Zoological science》2012,29(8):493-498
Large-scale systematic patterns of body size are a basic concern of evolutionary biology. Identifying body size variation along altitudinal gradients may help us to understand the evolution of life history of animals. In this study, we investigated altitudinal variation in body size, age and growth rate in Chinese endemic frog, Pelophylax pleuraden. Data sampled from five populations covering an altitudinal span of 1413 to 1935 m in Sichuan province revealed that body size from five populations did not co-vary with altitudes, not following Bergmann's rule. Average adult SVL differed significantly among populations in males, but not in females. For both sexes, average adult age differed significantly among populations. Post-metamorphic growth rate did not co-vary with altitude, and females grew faster than males in all populations. When controlling the effect of age, body size did not differ among populations in both sexes, suggesting that age did not affect variation in body size among populations. For females, there may be other factors, such as the allocation of energy between growth and reproduction, that eliminated the effect of age on body size. To our minds, the major reason of body size variation among populations in male frogs may be related to individual longevity. Our findings also suggest that factors other than age and growth rate may contribute to size differences among populations.  相似文献   

5.
JUHA TlAINEN  ILPO K. HANSKI 《Ibis》1985,127(3):365-371
Wing shape variation of European Willow Warblers Phylloscopus trochilus and Chiffchaffs P. collybita was studied using indices calculated from wing formulae. Our data were from free-living local populations of P. t. acredula and P. c. abietinus from southern Finland, and P. t. trochilus and P. c. collybita from southwestern Germany.
There were no significant shape differences between the subspecies of the Willow Warbler in which sexual dimorphism was pronounced. The subspecies of the Chiffchaff were significantly different while the sexes were not. There were also significant differences between adult and immature individuals in the autumn. The intrapopulation variation must be considered in attempts to recognize different subspecies or populations in data on birds caught during migration.
In the Willow Warbler at least, the difference between age-groups was larger in males than in females. If the change in wing formula due to the complete pre-nuptial moult is similar in both sexes, juvenile males intermediate between adult females and adult males suffer disproportionately high mortality. It was earlier suggested that sexual selection increases body size in Willow Warbler males, but the present results imply additional selection pressures for increasing sexual dimorphism.  相似文献   

6.
Aging is an increase in mortality risk with age due to a decline in vital functions. Research on aging has entered an exciting phase. Advances in biogerontology have demonstrated that proximate mechanisms of aging and interventions to modify lifespan are shared among species. In nature, aging patterns have proven more diverse than previously assumed. The paradigm that extrinsic mortality ultimately determines evolution of aging rates has been questioned and there appears to be a mismatch between intra‐ and inter‐specific patterns. The major challenges emerging in evolutionary ecology of aging are a lack of understanding of the complexity in functional senescence under natural conditions and unavailability of estimates of aging rates for matched populations exposed to natural and laboratory conditions. I argue that we need to reconcile laboratory and field‐based approaches to better understand (1) how aging rates (baseline mortality and the rate of increase in mortality with age) vary across populations within a species, (2) how genetic and environmental variation interact to modulate individual expression of aging rates, and (3) how much intraspecific variation in lifespan is attributable to an intrinsic (i.e., nonenvironmental) component. I suggest integration of laboratory and field assays using multiple matched populations of the same species, along with measures of functional declines.  相似文献   

7.
Many secondary sexual characters vary in a systematic way with the age of individuals, with young and old individuals displaying at lower levels than individuals of intermediate age. Analyses quantifying the within-individual and among-individual components of phenotypic variation can help partition effects of phenotypic plasticity and selective mortality. We analysed phenotypic variation in the expression of a secondary sexual character, tail length, in male and female barn swallows Hirundo rustica from four European populations studied during 11-26 years, using linear mixed effect models to describe age-related expression. Tail length increased from yearlings to intermediate aged birds with a subsequent decrease at old age. In males, this age-related pattern was because of both within-subject and between-subject effects, with no difference among populations. Males having longer lifespan had shorter tails when young than those having shorter lifespan. Females showed similar patterns of age-related variation as males, with no difference among populations. The major difference between sexes was that the between-subject effects (i.e. disappearance effects or selection) were much more important for males compared to females for which lifetime variation in tail length was mainly because of a within-subject effect (i.e., a plastic response). These findings suggest that whereas males trade greater expression of the secondary sexual character at young age against longevity, that was not the case for females. This is consistent with tail length being more costly in males than in females, with the cost of long tails potentially being offset by elevated mating success, whereas that is not the case in females.  相似文献   

8.
Animal lifespans can vary substantially among closely related species and even among conspecific populations, but it is often difficult to identify environmental and genetic factors producing such variation. We used experimental evolution to examine how transfer to a novel environment affects adult lifespan and rates of senescence in a seed-feeding beetle. Three replicate lines of Callosobruchus maculatus (F.) were switched to a new host plant (cowpea), and each evolved shorter adult lifespans compared to a line maintained on the ancestral host (mung bean). However, the evolution of lifespan differed between the sexes; female lifespan was reduced by ~11% in all cowpea replicates, whereas male lifespan decreased by an average of only 5.6% and the magnitude of the reduction varied among replicates. Reduced lifespan in lines switched to cowpea mirrored the shorter lifespan observed in a separate population chronically associated with cowpea. We then performed crosses between the mung bean and cowpea lines to estimate the genetic architecture underlying the rapid evolution of a shorter lifespan on cowpea. Dominance (overdominance) contributed substantially to the difference between the cowpea and mung bean lines for female lifespan but not for male lifespan. However, details of the genetic architecture varied among the three replicate crosses, so that the convergent evolution of shorter female lifespan in the different cowpea lines did not arise from identical allelic substitutions. Our study demonstrates that insect lifespan can be predictably modified by a switch to a novel host plant, that both the magnitude of this response and its underlying genetic architecture can be sex-specific, and that convergent evolution of a complex trait such as lifespan can arise from different genetic mechanisms.  相似文献   

9.
In most species that reproduce sexually, successful gametogenesis requires recombination during meiosis. The number and placement of crossovers (COs) vary among individuals, with females and males often presenting the most striking contrasts. Despite the recognition that the sexes recombine at different rates (heterochiasmy), existing data fail to answer the question of whether patterns of genetic variation in recombination rate are similar in the two sexes. To fill this gap, we measured the genome-wide recombination rate in both sexes from a panel of wild-derived inbred strains from multiple subspecies of house mice (Mus musculus) and from a few additional species of Mus. To directly compare recombination rates in females and males from the same genetic backgrounds, we applied established methods based on immunolocalization of recombination proteins to inbred strains. Our results reveal discordant patterns of genetic variation in the two sexes. Whereas male genome-wide recombination rates vary substantially among strains, female recombination rates measured in the same strains are more static. The direction of heterochiasmy varies within two subspecies, Mus musculus molossinus and Mus musculus musculus. The direction of sex differences in the length of the synaptonemal complex and CO positions is consistent across strains and does not track sex differences in genome-wide recombination rate. In males, contrasts between strains with high recombination rate and strains with low recombination rate suggest more recombination is associated with stronger CO interference and more double-strand breaks. The sex-specific patterns of genetic variation we report underscore the importance of incorporating sex differences into recombination research.  相似文献   

10.
There is an intense search for longevity genes in both animal models and humans. Human family studies have indicated that a modest amount of the overall variation in adult lifespan (approximately 20–30%) is accounted for by genetic factors. But it is not known if genetic factors become increasingly important for survival at the oldest ages. We study the genetic influence on human lifespan and how it varies with age using the almost extinct cohorts of Danish, Finnish and Swedish twins born between 1870 and 1910 comprising 20,502 individuals followed until 2003–2004. We first estimate mean lifespan of twins by lifespan of co-twin and then turn to the relative recurrence risk of surviving to a given age. Mean lifespan for male monozygotic (MZ) twins increases 0.39 [95% CI (0.28, 0.50)] years for every year his co-twin survives past age 60 years. This rate is significantly greater than the rate of 0.21 (0.11, 0.30) for dizygotic (DZ) males. Females and males have similar rates and these are negligible before age 60 for both MZ and DZ pairs. We moreover find that having a co-twin surviving to old ages substantially and significantly increases the chance of reaching the same old age and this chance is higher for MZ than for DZ twins. The relative recurrence risk of reaching age 92 is 4.8 (2.2, 7.5) for MZ males, which is significantly greater than the 1.8 (0.10, 3.4) for DZ males. The patterns for females and males are very similar, but with a shift of the female pattern with age that corresponds to the better female survival. Similar results arise when considering only those Nordic twins that survived past 75 years of age. The present large population based study shows genetic influence on human lifespan. While the estimated overall strength of genetic influence is compatible with previous studies, we find that genetic influences on lifespan are minimal prior to age 60 but increase thereafter. These findings provide a support for the search for genes affecting longevity in humans, especially at advanced ages.  相似文献   

11.
Sexual selection in general, and sexual conflict in particular, should affect the evolution of lifespan and aging. Using experimental evolution, we tested whether removal of sexual selection leads to the evolution of accelerated or decelerated senescence. We subjected replicated populations of the seed beetle Callosobruchus maculatus to either of two selection regimes for 35 generations. These regimes either allowed (polygamy) or removed the potential (monogamy) for sexual selection to operate. To test for the evolution of intrinsic differences between the two selection regimes, we assayed longevity in replicate cohorts of virgin females and males. Virgin females from populations evolving under sexual selection had reduced lifespan as predicted by the sexual conflict theory of aging. However, this reduction was due to increased baseline mortality rather than an increase in age-specific mortality rates with age. We discuss these findings in light of other data from this model system and suggest that system-specific idiosyncrasies may often modulate the general effects of male–female coevolution on the evolution of aging.  相似文献   

12.
1.  Variation in longevity within and between natural populations is widespread, and understanding the relative importance of environmental and genetic factors as well as their interactions in mediating such variation is crucial in longevity research.
2.  In this study lifespan of adult copper butterflies was examined in relation to altitude, temperature (20 and 27 °C), sex and adult feeding.
3.  As expected, longevity increased with decreasing temperature, and sucrose-fed butterflies had longer lifespans compared to water-fed and finally non-fed individuals. The impact of feeding, especially of having access to water or not, was larger at the higher compared to the lower temperature.
4.  Regarding altitudinal patterns, increased lifespan in high-altitude populations was largely restricted to beneficial feeding conditions, while under carbohydrate deprivation low-altitude animals lived longer, suggesting that low-altitude butterflies do better under food stress.
5.  Differences in longevity between sexes were small at 20 °C, while females lived substantially longer than males at the higher temperature. Consequently, females may be less susceptible to high temperature stress than males. Further, males suffered more from food stress than females, suggesting that females are generally more stress resistant than males.
6.  Using a full factorial design, this study demonstrates that variation in longevity is caused by several factors, and additionally by substantial interactive effects. Consequently, patterns of variation in longevity are complex, and one needs to be cautious when neglecting this source of variation, by focussing on individual factors only.  相似文献   

13.
1. Recent observations of actuarial senescence – an increase in mortality rate with age – have challenged the assertion that the brevity of adult insect life spans precludes ageing. 2. Here the rate of senescence in 22 species of Lepidoptera was quantified by fitting demographic models to adult survivorship data drawn from a range of field and laboratory studies. 3. Senescence was evident in all 22 species investigated, with a model of age‐related mortality consistently fitting the survivorship curves significantly better than an alternative model which assumes constant mortality. 4. The rates of senescence varied significantly among species. The rates of senescence also differed significantly between sexes for all species tested, but not in a consistent way.  相似文献   

14.
We tested whether selective breeding for early-age high voluntary exercise behavior over 16 generations caused the evolution of lifelong exercise behavior, life expectancy, and age-specific mortality in house mice (Mus domesticus). Sixteenth-generation mice from four replicate selection lines and four replicate random-bred control lines were individually housed from weaning through death and divided between two activity treatments (either with or without running wheels). Thus, there were four treatment groups: selection versus control crossed with active versus sedentary. The effects of selective breeding on life expectancy and age-specific mortality differed between females and males. In females, sedentary selection mice had early and high initial adult mortality and thus the lowest increases in mortality with age. Active selection females had the lowest early adult mortality, had limited mortality during midlife, and exhibited rapid increases in mortality rates at the very end of life; thus, they had deferred senescence. Median life expectancy was greater for both groups of selection females than for the two complementary groups of control females. Like females, sedentary selection males had the highest early adult mortality, and slow but steadily increasing mortality over the entire lifetime. Unlike the active selection females, active control males had the lowest mortality across the lifespan (until the end of life). Interestingly, the males with the lowest median life expectancy were those in the active selection treatment group. In both sexes, running (km/week) decreased over the lifetime to very low and virtually equivalent levels at the end of life in control and selection mice. Overall, these results demonstrate an evolutionary cost of selective breeding for males, regardless of exercise level, but a benefit for females when they have an outlet for the up-selected behavior. We conclude that correlated evolution of senescence occurs in mice selectively bred for high voluntary wheel running; exercise per se is beneficial for control mice of both sexes, but the impact on the effect of selection depends on sex; and the behavioral effect of exercise selection at an early age declines throughout the life span, which demonstrates decreasing genetic correlations over age for the genes involved in increased exercise.  相似文献   

15.
Grayling Thymallus thymallus in Lake Aursjøen, Norway, showed a remarkably uniform growth pattern throughout life, whereas brown trout Salmo trutta showed far more variation. In addition, a narrower age-length interval of maturation was found in grayling. The restricted life history variation in grayling is discussed and it is suggested that all grayling of Lake Aursjøen experience similar environmental conditions as juveniles, which induces low phenotypic variation. In contrast the existence of several spawning populations, adapted to as many as 28 different tributaries, may have created large life history variation in Aursjøen trout. Logistic models revealed that both age and length had significant, simultaneous effects on the maturation of both species. Furthermore, the sexes of trout differed in maturation patterns, i.e. males matured earlier and at smaller sizes than female conspecifics, but no difference was found between the sexes of grayling. In addition, larger sex-specific growth differences were found in trout. An absence of early maturing males in grayling and their presence in trout is discussed as a possible explanation of the restricted life history variation found between sexes of grayling. Male grayling experienced a larger mortality rate than did females, whereas no such differences were found in trout. It is suggested that grayling males invest more in reproduction than do females, due primarily to large investments in breeding behaviour. The equal mortality rates found for both sexes of trout, albeit males starting to spawn earlier than females, is probably explained by a female-selective fishing mortality.  相似文献   

16.
Investigators have rarely sought evidence for senescence in natural populations because it is assumed that relatively few individuals will survive long enough in the wild to exhibit the intrinsic increase in mortality with age expected from senescent individuals. Nevertheless, senescence has been documented in some natural populations, mostly in birds and mammals. Here we report on a comparative study of senescence in two natural populations of guppies (Poecilia reticulata). We document senescence as an age-specific increase in mortality rate, with use of mark-recapture studies and implementation of program MARK for analysis of such observations. Extrinsic mortality was controlled for by choosing populations that experience low rates of predation because they coexist with only a single piscine predator (Rivulus hartii). These populations differ in their evolutionary history because one was native to such a site whereas the other was introduced to a site that previously contained no guppies. The source of the introduced guppies was a high-predation population downstream below a barrier waterfall. Theory predicts that the guppies derived from a high-predation locality should experience senescence at an earlier age than the native low-predation population; however, the historical differences among these populations are also confounded with everything else that differs among the two localities. We found that females from a natural low-predation population have delayed senescence compared with the recently established population and hence that the differences among localities in senescence conform to theoretical predictions. The males from natural low-predation environments also had lower overall mortality rates, but contrary to predictions, the pattern of senescence for males did not differ between populations. The difference between the sexes is potentially attributable to two factors that lower the statistical power for distinguishing differences in the age-specific acceleration of mortality in males. One factor is that males have higher mortality rates, so fewer survive to advanced ages. A second is that we had a greater ability to discriminate among older age classes in females. We also found that the introduced population sustained a higher rate of disease than the native low-predation population. Such disease may represent a confounding factor in our comparison, but it may also reflect one of the trade-offs inherent in the life-history differences of these populations.  相似文献   

17.
Recent work suggests that sexual selection can influence the evolution of ageing and lifespan by shaping the optimal timing and relative costliness of reproductive effort in the sexes. We used inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age‐dependent reproductive effort, lifespan, and ageing within and between the sexes. Sexual selection theory predicts that males should die sooner and age more rapidly than females. However, a reversal of this pattern may be favored if reproductive effort increases with age in males but not in females. We found that male calling effort increased with age, whereas female fecundity decreased, and that males lived longer and aged more slowly than females. These divergent life‐history strategies were underpinned by a positive genetic correlation between early‐life reproductive effort and ageing rate in both sexes, although this relationship was stronger in females. Despite these sex differences in life‐history schedules, age‐dependent reproductive effort, lifespan, and ageing exhibited strong positive intersexual genetic correlations. This should, in theory, constrain the independent evolution of these traits in the sexes and may promote intralocus sexual conflict. Our study highlights the importance of sexual selection to the evolution of sex differences in ageing and lifespan in G. sigillatus.  相似文献   

18.
Males and females have different routes to successful reproduction, resulting in sex differences in lifespan and age-specific allocation of reproductive effort. The trade-off between current and future reproduction is often resolved differently by males and females, and both sexes can be constrained in their ability to reach their sex-specific optima owing to intralocus sexual conflict. Such genetic antagonism may have profound implications for evolution, but its role in ageing and lifespan remains unresolved. We provide direct experimental evidence that males live longer and females live shorter than necessary to maximize their relative fitness in Callosobruchus maculatus seed beetles. Using artificial selection in a genetically heterogeneous population, we created replicate long-life lines where males lived on average 27 per cent longer than in short-life lines. As predicted by theory, subsequent assays revealed that upward selection on male lifespan decreased relative male fitness but increased relative female fitness compared with downward selection. Thus, we demonstrate that lifespan-extending genes can help one sex while harming the other. Our results show that sexual antagonism constrains adaptive life-history evolution, support a novel way of maintaining genetic variation for lifespan and argue for better integration of sex effects into applied research programmes aimed at lifespan extension.  相似文献   

19.
Worn teeth in herbivore ungulates may be related to lower efficiency in mastication and hence lower performance. However, selection should favour maximal performance in terms of body mass and reproductive capacity during reproductive lifespan, when permanent teeth are already partially worn. We hypothesize that wear rate may respond to a strategy of use of tooth materials (notably dentine), which balances instantaneous wear rate and performance against tooth preservation for future performance and reproduction. In the present study, we investigated 4151 carcasses of Iberian red deer Cervus elaphus hispanicus and show that more worn molars were not related to lower performance throughout age. By comparing between sexes, tooth wear rates were smaller in females than in males, but the relationship between tooth wear and body performance also differed between the sexes: females did not show a significant relationship between tooth wear and performance but males with more worn teeth were in general heavier and had larger antlers until senile age, when more depleted teeth were related to smaller antlers. These results reveal, for the first time, sex-specific lifetime strategies of dentine expenditure: maintenance of performance ability throughout a longer reproductive lifespan in females, compared with maximizing current performance by depleting dentine reserves within a shorter lifespan in males.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 487–497.  相似文献   

20.
Evolution of adaptation through allometric shifts in a marine snail   总被引:1,自引:0,他引:1  
Variation in ontogenetic development among individuals may be a major contributor to morphological variation within species. Evolution of different growth trajectories might, for example, evolve as a response to varying ecological contexts of individuals living in different environments, or by life-stage or gender differences. The intertidal periwinkle Littorina saxatilis is strongly polymorphic in shell shape. We compared ontogenetic trajectories between life stages, local populations, and sexes to understand how different morphological end points are reached during ontogeny and what might cause these differences. Applying landmark-based geometric morphometrics, we captured shell shape variation for four Swedish populations of this species. We also derived a method to visualize ontogenetic trajectories described by the relationship of size to the multivariate shape space. We found that growth trajectories differed between individuals living in different habitats, as well as between sexes and maturity stages. Males living on rocky cliffs grew isometrically throughout life, whereas females from the same habitat switched from isometric growth as juveniles to allometric growth as adults. In contrast, males and females living on boulders grew allometrically as juveniles but changed to isometric growth at sexual maturity. Thus, in this species, ontogenetic growth seems influenced by habitat-associated selection as well as by gender and age-specific selection. These differing selection regimes result in ontogenetic shifts in allometry in three of the four groups examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号