首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. We investigate long‐term (>200 years) changes to the composition and spatial structure of macrophyte communities in a shallow, eutrophic lake (Barton Broad, eastern England) and consider the implications for lake restoration. 2. Historical macrophyte data were assembled from a variety of sources: existing plant databases, museum herbaria, journal articles, old photographs and eyewitness accounts. Additionally, two types of sediment core sample were analysed for plant macro‐remains and pollen; bulk basal samples from multiple core sites analysed to provide information on ‘pre‐disturbance’ macrophyte communities and two whole cores analysed to determine historical change. 3. Prior to the late 1800s, macrophyte communities were diverse and included a multilayered mosaic of short‐stature submerged taxa and taller submerged and floating‐leaved species. With the progression of eutrophication after around 1900, the former community was displaced by the latter. Diversity was maintained, however, since an encroaching Schoenoplectus–nymphaeid swamp generated extensive patches of low‐energy habitat affording refugia for several macrophytes otherwise unable to withstand the hydraulic forces associated with open water conditions. When this swamp vegetation disappeared in the 1950s, many of the ‘dependent’ aquatic macrophytes also declined leaving behind a sparse, species‐poor community (as today) resilient to both eutrophication and turbulent open waters. 4. The combination of historical and palaeolimnological data sources offers considerable benefits for reconstructing past changes to the aquatic vegetation of lakes and for setting restoration goals. In this respect, our study suggests that successful restoration might often be better judged by reinstatement of the characteristic structure of plant communities than the fine detail of species lists; when nutrients are low and the structure is right, the right species will follow.  相似文献   

2.
We describe the limnological changes between 1989 and 2006 in an urban, shallow lake, Laguna Alalay, located in the Andean valley of Cochabamba (Bolivia). Until 1960, water diversion to the lake was used to lower the inundation risk of Cochabamba city. In the 1980s and 1990s, the high waterfowl diversity and recreational services provided by the lake increased its conservation value. However, the population increase and the discharge of wastewater rich in nutrients increased eutrophication, and the lake became characterized by an annual alternation of submerged macrophytes and phytoplankton. The main aim of the present study is to analyze the response of the lake to manipulations implemented by local authorities: (a) sediment removal and accidental introduction of the exotic fish species Odontesthes bonariensis in 1997 and (b) manual mass removal of floating macrophytes during 2004–2006. The sediment removal and species introduction had several unpredictable consequences for the functioning of the lake, namely the transition to a permanent turbid water state and the persistent dominance of floating macrophytes. A general conclusion of our study is that any lake recovery measures in Bolivia should consider not only ecological, but also socio-economic and political aspects. Taking these into account, restoration of the submerged macrophyte-dominated state may not be that universally desirable as is widely held.  相似文献   

3.
Torben Klein 《Hydrobiologia》1993,251(1-3):297-308
The history of the development of Lake Hejrede Sø (Denmark) and the related history of the watershed management were studied based on analyses of macrofossil content, chemical composition and Clostridium perfringens content in sediment cores. Depth-age relations of ecological changes were established through Pb210 analyses, and a systematic search for written sources describing the watershed history was carried out.Lake Hejrede Sø used to be a humic, acid but relatively clearwater lake with an extensive submersed vegetation. Owing to deforestation and reclamation of bogs and meadows, the accumulation of nutrients in these ecotones vanished. Subsequently, in early 1800 the lake developed into a clearwater alkaline lake, and later became more eutrophic which resulted in the decline of the submersed vegetation. At the time the annual sediment phosphorus accumulation increased more than twofold, and influx of mineral matter increased drastically. In mid-1900, submersed vegetation had disappeared. The Clostridium perfringens analysis and the historical evidence show that no sewage was discharged to the lake until mid-1900, which implies that changed agricultural watershed exploitation and ecotone reclamation during the 19th century was the cause of the increased nutrient influx, and the deterioration of the lake.Written historical sources confirm the palaeolimnological interpretations and describe the agricultural practices responsible for the development.  相似文献   

4.
1. Eutrophication has a profound effect on the biological structure and function of shallow lakes, altering the composition and abundance of submerged macrophyte and fish assemblages. Relatively little is known, however, about decadal to centennial‐scale change in these important aspects of shallow lake ecology. 2. Established palaeolimnological inference models are limited to reconstructing a single variable. As macrophyte and zooplanktivorous fish abundance exert dual and interacting controls on cladoceran assemblages a single variable inference model may contain significant error. To obviate this problem, we applied a new cladoceran‐based multivariate regression tree (MRT) model to cladoceran subfossil assemblages from dated cores from a small shallow lake (Felbrigg Lake, U.K.) to assess long‐term change in fish and submerged macrophyte abundance. Plant macrofossil, chironomid and mollusc subfossil assemblages were also analysed to track changes in biological structure and function and to evaluate the inferences of the MRT model. 3. Over the 200+ year period covered by the sediment cores, there was good agreement in the timing and nature of ecological change reflected by the plant macrofossil, mollusc, chironomid and cladoceran data. The sediment sequence was divided into three dated zones: c. 1797–1890, c. 1890–1954 and c. 1954–present. Prior to 1890 plant‐associated mollusc, cladoceran and chironomid assemblages indicated a species‐rich macrophyte community; a scenario confirmed by the plant macrofossil data. From c. 1890 to 1954 macrophyte‐associated species of all three invertebrate groups remained abundant but the proportion of pelagic cladocerans rose. Post‐1954 mollusc and chironomid assemblages changed to sediment associated detrital feeders and the proportion of pelagic cladoceran taxa increased further. 4. The cladoceran‐based MRT model indicated a long period of stability, c. 1790–1927, characterised by abundant submerged macrophytes and zooplanktivorous fish. From c. 1927 to 1980, the MRT model inferred a decline in zooplanktivorous fish density (ZF) but relative stability in August macrophyte abundance. From 1980 to 2000, an increase in zooplanktivorous fish was inferred tallying well with available data on the fish population (since the 1970s), which indicated extirpation of perch in the 1970s and a subsequent increase in the rudd population. The model inferred little change in August macrophyte abundance until post‐c. 1980 at which point it indicated a decline. The surface sediment assemblage was placed in MRT group A, where submerged plants are absent or very rare in late summer in good agreement with current conditions at the site. 5. The MRT model, applied here for the first time, appears to have successfully tracked changes in macrophyte abundance and ZF over the last 200 years at Felbrigg Lake. The inferences agreed with historical observations on the fish community and the supporting palaeolimnological data. Given that multiple structuring forces shape most biological communities, the application of a model capable of allowing for this represents a significant advance in palaeolimnology.  相似文献   

5.
6.
Strumpshaw Broad is a medieval man-made lake, excavated about 500 years ago in valley peat deposits. Evidence from diatom fossils, and other remains (filamentous algae, Chrysophycean cysts, sponge spicules, snail shells) indicates a series of changes since the eighteenth century probably related to development of the city of Norwich and sophistications of its sewerage system. Progressive nutrient-enrichment led to replacement around 1912 of low-growing macrophytes (Chara) and sparse plankton populations by tall-growing vascular aquatic macrophytes, with increased epiphytic diatom numbers. A blanketing phase of filamentous algae (probably Vaucheria) was associated with the transition between 1795 and 1903. Around 1950, after a phase of increasing plankton populations and declining epiphyte and macrophyte numbers, the macrophyte-epiphyte complex disappeared altogether, to be replaced by dense plankton populations for a few years. These changes and the progressive decrease in volume of the lake owing to increased build up of sediment throughout the period covered by the core, led to alterations in hydrology which now prevent even plankton development. All data are expressed on absolute bases (amount sedimented per unit area per year) and the necessity for this, as opposed to relative measures (percentage representation, concentration per unit weight) in valid interpretation of palaeolimnological data is emphasized.  相似文献   

7.
Degraded Softwater Lakes: Possibilities for Restoration   总被引:5,自引:0,他引:5  
In the Netherlands, the characteristic flora of shallow softwater lakes has declined rapidly as a consequence of eutrophication, alkalization and acidification. The sediment of most lakes has become nutrient rich and anaerobic. We expected that, if a vital seed bank was still present, restoration of the original water quality and sediment conditions would lead to the return of softwater macrophytes. The restoration of 15 degraded, shallow, softwater lakes in the Netherlands was monitored from 1983 to 1998. In eutrophied as well as in acidified lakes, removal of accumulated organic matter from the sediment and shores was followed by rapid recolonization of softwater macrophytes present in the seedbank. After isolation from alkaline water and subsequent mud removal, this recovery was also observed in alkalized lakes. Further development of softwater vegetation correlated strongly with the water quality. When renewed eutrophication was successfully prevented, softwater macrophytes could expand. However, in acidified lakes, Juncus bulbosus and Sphagnum species became dominant after restoration. Liming of an acidified lake was followed by re‐acidification within 3 years. Recolonization by softwater macrophytes was inhibited by high turbidity of the water column and spreading of large helophytes on the shore. As an alternative, controlled inlet of alkaline, nutrient‐poor groundwater was studied in a few lakes. The pH of those lakes increased, the carbon and nitrogen availability decreased and softwater macrophytes returned. Successful restoration has contributed considerably to maintaining biodiversity in softwater lakes in the Netherlands.  相似文献   

8.
Colonization of submerged macrophytes and changes in species composition were studied in shallow Lake Væng during the first five years (1987–91) following fish manipulation in 1986–1988 and a resultant significant improvement in lake water transparency. No submerged macrophytes were present in the lake from 1981–1986, during which time the summer mean Secchi depth ranged from 0.6 and 0.8 m. From 1987 to 1990, Secchi depth increased from 0.9 m to 1.8 m and macrophyte coverage consequently increased (1 % of the lake area in 1987, 2% in 1988, 50% in 1989, 80% in 1990 and 90% in 1991). At the same time, the macrophytes became taller, and the weedbeds more dense. The macrophytes colonized from the exposed and deeper part of the lake towards the sheltered and more shallow part of the lake, a colonization pattern that was confirmed by transplantation experiments. The delay in colonization of the shallow parts may be caused by waterfowl grazing. The vegetation was initially dominated by Potamogeton crispus L., but there was a gradual change during 1988–1989 and Elodea canadensis Michx became exclusively dominant in 1990–1991.  相似文献   

9.
1. Sedimentary remains of aquatic plants, both vegetative (turions, leaves, spines) and reproductive (fruits, seeds, pollen), may provide a record of temporal changes in the submerged vegetation of lakes. An independent assessment of the degree to which these remains reflect past floristic change is, however, rarely possible. 2. By exploiting an extensive series of historical plant records for a small shallow lake we compare plant macrofossil (three cores) and pollen (one core) profiles with the documented sequence of submerged vegetation change since c. 1750 AD. The data set is based on 146 site visits with 658 observations including 42 taxa classified as aquatic, spanning 250 years. 3. Approximately 40% of the historically recorded aquatic taxa were represented by macro‐remains. In general macrofossils underestimated past species diversity, with pondweeds (three of eight historically recorded Potamogeton species were found) particularly poorly represented. Nonetheless, several taxa not reported from historical surveys (e.g. Myriophyllum alterniflorum and Characeae) were present in the sediment record. 4. The pollen record revealed taxa which left no macro‐remains (e.g. Littorella uniflora), and the macrofossil record provided improved taxonomic resolution for some taxa (e.g. Potamogeton) and a more reliable record of persistence, appearance and loss of others (e.g. Myriophyllum spp. and Nymphaeaceae). 5. Detrended correspondence analysis indicated that changes in the community composition evidenced by the palaeolimnological and historical records were synchronous and of a similar magnitude. Both records pointed to a major change at around 1800, with the historical record suggesting a more abrupt change than the sedimentary data. There was good agreement on a subsequent change c. 1930. 6. The palaeolimnological data did not provide a complete inventory of historically recorded species. Nevertheless, these results suggest that combined macrofossil and pollen records provide a reliable indication of temporal change in the dominant components of the submerged and floating‐leaved aquatic vegetation of shallow lakes. As such palaeolimnology may provide a useful tool for establishing community dynamics and successions of plants over decadal to centennial timescales.  相似文献   

10.
1. Palaeolimnological data were used to investigate drivers of the community of primary producers in Lake Mattamuskeet, North Carolina, U.S.A. This is a large, shallow lake with two basins currently dominated by phytoplankton and macrophytes. The two basins were divided in 1940 by the building of a roadway across the lake, which also corresponded with the divergence in their ecosystem state. 2. Photosynthetic pigments, organic matter and nutrients (P, N, C, S) were analysed in sediment cores from each basin to reconstruct the primary producer community over the past c. 100 years. We sought to answer two questions. First, what changes to the ecosystem resulting from the building of the roadway caused the development of different primary producer communities in the two basins? Second, why have the alternative ecosystem states persisted despite a variety of human perturbations since 1940? 3. K‐means cluster analysis and principal component analysis were applied to identify three sediment types based on photosynthetic pigment data: sediments indicating low productivity (low pigment concentrations), sediments associated with macrophytes (chlorophyll a and b) and with phytoplankton (alloxanthin and aphanizophyll). In addition, other palaeolimnological proxies measured, such as loss on ignition, total phosphorus, total organic carbon/total nitrogen and other nutrients, were different in post‐1940 sediments within the two basins. 4. These differences suggest characteristics, such as nutrient cycling, water depth and other physical changes resulting from roadway construction, combined to establish and maintain the differing communities of primary producers in the two basins. Furthermore, Fe/S dynamics and waterfowl herbivory probably contributed to the development of the two ecosystem states.  相似文献   

11.
12.
13.
14.
15.
1. Submerged macrophyte and phytoplankton components of eutrophic, shallow lakes have frequently undergone dynamic changes in composition and abundance with important consequences for lake functioning and stability. However, because of a paucity of long‐term survey data, we know little regarding the nature, direction and sequencing of such changes over decadal–centennial or longer timescales. 2. To circumvent this problem, we analysed multiple (n = 5) chronologically correlated sediment cores for plant macro‐remains and a single core for pollen and diatoms from one small, shallow, English lake (Felbrigg Hall Lake, Norfolk, U.K.), documenting 250 years of change to macrophyte and algal communities. 3. All five cores showed broadly similar stratigraphic changes in macrophyte remains with three distinct phases of macrophyte development: Myriophyllum–Chara–Potamogeton (c. pre‐1900), to Ceratophyllum–Chara–Potamogeton (c. 1900–1960) and finally to Zannichellia–Potamogeton (c. post‐1960). Macrophyte species richness declined from at least 10 species pre‐1900 to just four species at the present day. Additionally, in the final Zannichellia–Potamogeton phase, a directional shift between epi‐benthic and phytoplankton‐based primary production was indicated by the diatom data. 4. Based on macrophyte–seasonality relationships established for the region, concomitant with the final shift to Zannichellia–Potamogeton, we infer a reduction in the seasonal duration of plant dominance (plant‐covered period). Furthermore, we hypothesise that this change in species composition resulted in a situation whereby macrophyte populations were seasonally ‘sandwiched’ between two phytoplankton peaks in spring and late summer as observed in the contemporary lake. 5. We suggest that eutrophication‐induced reductions in macrophyte species richness, especially if the number of plant‐seasonal strategies is reduced, may constrict the plant growing season. In turn, this may render a shallow lake increasingly vulnerable to seasonal invasions of phytoplankton resulting in further species losses in the plant community. Thus, as part of a slow (over perhaps 10–100s of years) and self‐perpetuating process, macrophytes may be gradually pushed out by phytoplankton without the need for a perturbation as required in the alternative stable states model of plant loss.  相似文献   

16.
Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is supposed to be one of the mechanisms that contribute to the stabilisation of clear-water states in shallow lakes. The relevance of this process at ecosystem level, however, is debated because in situ evidence is difficult to achieve. Our literature review indicates that allelopathically active species such as Myriophyllum, Ceratophyllum, Elodea and Najas or certain charophytes are among the most frequent submerged macrophytes in temperate shallow lakes. The most common experimental approach for allelopathic interference between macrophytes and phytoplankton has been the use of plant extracts or purified plant compounds. Final evidence, however, requires combination with more realistic in situ experiments. Such investigations have successfully been performed with selected species. In situ allelopathic activity is also influenced by the fact that phytoplankton species exhibit differential sensitivity against allelochemicals both between and within major taxonomic groups such as diatoms, cyanobacteria and chlorophytes. In general, epiphytic species apparently are less sensitive towards allelochemicals than phytoplankton despite living closely attached to the plants and being of key importance for macrophyte growth due to their shading. Light and nutrient availability potentially influence the sensitivity of target algae and cyanobacteria. Whether or not additional stressors such as nutrient limitation enhance or dampen allelopathic interactions still has to be clarified. We strongly propose allelopathy as an important mechanism in the interaction between submerged macrophytes and phytoplankton in shallow lakes based on the frequent occurrence of active species and the knowledge of potential target species. The role of allelopathy interfering with epiphyton development is less well understood. Including further levels of complexity, such as nutrient interference, grazing and climate, will extend this ecosystem-based view of in situ allelopathy.  相似文献   

17.
Sven Björk 《Hydrobiologia》1982,86(1-2):177-183
Case studies illustrating lake and wetland ecosystem problems as well as restoration methods are given. Among these methods, aeration of deep lakes, sediment removal from shallow, polluted lakes, sediment manipulation in polluted and acidified lakes, biomanipulation and wetland management methods are considered. A treatment program for directing ecosystem development is designed in each individual case according to lake type, degradation problems and goals of restoration. The most common goal in treatment of lakes is to meiotrophicate (oligotrophicate) hypertrophicated ecosystems. In the case of wetlands, conservation and restoration aspects are combined with a growing interest focused on biomass production by emergent macrophytes. Within practical frames of applied limnology, basic limnological research and training of doctorands have been organized as team-work for ecosystem-oriented investigations.  相似文献   

18.
19.
Changes in Hickling Broad, since its creation in the 14th or 15th centuries by the flooding of peat diggings, have been deduced from dating and analysis of a sediment core, historical information and current limnological studies. Until the 1930's there was little major change. Increased agricultural land fertilization led to markedly increased organic sedimentation from the 1930's onwards, due to increased growth of submerged macrophytes. Inorganic sedimentation increased concurrently as more powerful pumps were installed to help drain the adjacent fens and marshes.There was no evidence of increased plankton populations during this phase, but epiphytic diatom populations increased. In the mid 1960's the current period of hypereutrophication began. Epiphytic diatom numbers increased markedly and in the early 1970's the previous luxuriant macrophytes became sparse and the water became turbid with phytoplankton. These changes are attributable mainly to increases in the size of a roost of migratory black headed gulls (Larus ridibundus L.) on the lake in autumn and winter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号