首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质交联的研究进展   总被引:2,自引:0,他引:2  
蛋白质共价交联不但存在于一些生理过程 ,还与一些神经性疾病的发病机理相关。本文综述国内外 3种观点 ,阐述蛋白质由功能体 /单体转变成交联的二聚体 /多聚体的分子机理  相似文献   

2.
3.
The constitutive HSP70 purified from CHO cells, which indicated a single band in SDS-polyacrylamide gel electrophoresis, showed multiple bands in native-polyacrylamide gel electrophoresis. These results indicate that the protein may exist in oligomeric forms. After crosslinking the oligomers with glutaraldehyde, SDS-polyacrylamide gel electrophoresis showed three protein bands of molecular weight 70 kDa, 153 kDa, and 200 kDa corresponded to monomer, dimer, and trimer, respectively. The relative amount of oligomeric forms was dependent upon ATP concentrations: it increased upon hydrolysis of ATP or decreased upon incubation with high concentrations of ATP (1-10 mM). Autoradiographic analysis of the native polyacrylamide gel electrophoresis of HSP70 following incubation with [gamma-32P]ATP revealed that ATP bound to only monomer. These results suggest that the equilibrium between oligomeric forms is dependent on ATP concentrations. Nonetheless, during heat shock, both monomer and oligomer might be indistinguishably associated with some proteins, probably denatured proteins.  相似文献   

4.
Purified human Rad51 and Rad52 proteins exhibit multiple oligomeric states, in vitro. Single-stranded DNA (ssDNA) renders high molecular weight aggregates of both proteins into smaller and soluble forms that include even the monomers. Consequently, these proteins that have a propensity to interact with each other's higher order forms by themselves, start interacting with monomeric forms in the presence of ssDNA, presumably reflecting the steps of protein assembly on DNA. In the same conditions, DNA binding assays reveal hRad52-mediated recruitment of hRad51 on ssDNA. Put together, these studies hint at DNA-induced disassembly of higher-order forms of Rad51 and Rad52 proteins as steps that precede protein assembly during hRad51 presynapsis on DNA, in vitro.  相似文献   

5.
Bacteria from members of the families Enterobacteriaceae and Pseudomonadaceae were grown under phosphate-deficient (0.1 to 0.2 mM Pi) conditions and examined for the production of novel membrane proteins. Of the 17 strains examined, 12 expressed a phosphate-starvation-induced outer membrane protein which was heat modifiable in that after solubilization in sodium dodecyl sulfate at low temperature the protein ran on gels as a diffuse band of higher apparent molecular weight, presumably an oligomer form, which shifted to an apparent monomer form after solubilization at high temperature. These proteins fell into two classes based on their monomer molecular weights and the detergent conditions required to release the proteins from the peptidoglycan. The first class, expressed by species of the Pseudomonas fluorescens branch of the family Pseudomonadaceae, was similar to the phosphate-starvation-inducible, channel-forming protein P of Pseudomonas aeruginosa. The second class resembled the major enterobacterial porin proteins and the phosphate-regulated PhoE protein of Escherichia coli. Using a protein P-trimer-specific polyclonal antiserum, we were able to demonstrate cross-reactivity of the oligomeric forms of both classes of these proteins on Western blots. However, this antiserum did not react with the monomeric forms of any of these proteins, including protein P monomers. With a protein P-monomer-specific antiserum, no reactivity was seen with any of the phosphate-starvation-inducible membrane proteins (in either oligomeric or monomeric form), with the exception of protein P monomers. These results suggest the presence of conserved antigenic determinants only in the native, functional proteins.  相似文献   

6.
Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.  相似文献   

7.
MR60 is an intracellular membrane protein which has been shown to act as a mannoside specific lectin and to be identical to ERGIC-53, a protein characteristic of the endoplasmic reticulum-Golgi apparatus- intermediate compartment, acting as a shuttle. According to its primary sequence, this MR60/ERGIC-53 protein contains a luminal domain including the carbohydrate recognition domain, a stem, a transmembrane segment and a cytosolic domain. The endogenous MR60/ERGIC-53 protein is spontaneously oligomeric, (dimers and hexamers). In this paper, we study the relationship between the oligomerization state and the sugar binding capacity by using recombinant proteins. The expression of the recombinant proteins was evidenced by immunocytochemistry and by immunoprecipitation followed by SDS-PAGE analysis. The full size recombinant protein binds mannosides and is oligomeric, up to the hexameric form. Two truncated proteins lacking the transmembrane and the cytosolic domains were prepared and characterized. A long one, containing the cysteine 466 close to the C-terminal end of the recombinant protein but lacking the cysteine 475, close to the C- terminal end of the native protein, does bind mannosides and forms dimers but no higher oligomeric forms. A shorter one, lacking both the cysteines 466 and 475, does not bind mannosides and does not form dimers or higher polymers. The two cysteines in the carbohydrate recognition domain (C190 and C230) are not involved in the stabilization of oligomers. In conclusion, this study shows that the luminal moiety of MR60/ERGIC-53 contains a device allowing both its oligomeric pattern and its sugar binding capability.   相似文献   

8.
Small heat shock proteins (sHsps), which are categorized into a class of molecular chaperones, bind and stabilize denatured proteins to prevent aggregation. The sHsps undergo transition between different oligomeric states to control their hydrophobicity. So far, only the structures of sHsps in large oligomeric states have been reported. Here we report the structure of StHsp14.0 from Sulfolobus tokodaii in the dimeric state, which is formed by means of a mutation at the C-terminal IXI/V motif. The dimer is the sole building block in two crystal forms, and the dimeric mode is the same as that in the large oligomers. The N-terminal helix has variety in its conformation. Furthermore, spectroscopic and biochemical experiments were performed to investigate the conformational variability at the N-terminus. The structural, dynamical and oligomeric properties suggest that chaperone activity of StHsp14.0 is mediated by partially dissolved oligomers.  相似文献   

9.
《Biophysical journal》2022,121(7):1289-1298
Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.  相似文献   

10.
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in β-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.  相似文献   

11.
Acyl carrier proteins (ACPs) from Escherichia coli and Euglena were analyzed on Western blots using rabbit antibodies raised against E. coli ACP. Euglena ACP, unlike that from E. coli, behaves upon electrophoresis under denaturing conditions as its size would predict. Oligomeric forms of both ACPs were evident on Western blots, but the bacterial ACP had more tendency to aggregate. That the oligomeric forms were not due to impurities was shown by their regeneration from low-Mr protein, reaction with antibodies isolated from low-Mr protein, and by molecular weight determination of the ACP by low-angle laser light scattering.  相似文献   

12.
13.
Postsecretory modifications of streptavidin.   总被引:5,自引:0,他引:5       下载免费PDF全文
Streptavidin, an extracellular biotin-binding protein from Streptomyces avidinii, exhibits a multiplicity in its electrophoretic mobility pattern which depends both upon the conditions for growth of the bacterium and upon the protocol used in the purification of the protein. The observed structural heterogeneity appears to reflect the action of two types of postsecretory molecular events: proteolytic digestion of the intact Mr-18,000 subunit to a minimal molecular size (approx. Mr 14,000), and aggregation of the native tetramer into higher-order oligomeric forms. The extent of subunit degradation and/or tetrameric aggregation affects the capacity of a given streptavidin preparation to interact with biotin-conjugated proteins in different assay systems.  相似文献   

14.
An assessment study was carried out to evaluate the performance of the low-angle laser light scattering technique combined with high-performance gel chromatography in the presence of a nonionic surfactant, octaethyleneglycol n-dodecyl ether, precision differential refractometry and ultraviolet photometry. It was found that the combined technique is highly promising as a method for the determination of the molecular weight of a membrane protein solubilized by the surfactant. For trial, molecular weights of the following membrane proteins of Escherichia coli, both solubilized in oligomeric forms, were measured; porin that forms the transmembrane diffusion pore in the outer membrane, and lambda-receptor protein that facilitates the diffusion of maltose-maltodextrins across the outer membrane. The result obtained indicates that both porin and lambda-receptor protein exist as trimers in the surfactant solution.  相似文献   

15.
Polyamines are low‐molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light‐harvesting chlorophyll a/b–protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo‐adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.  相似文献   

16.
The possibility of inhibition of chaperonin functional activity by amyloid proteins was studied. It was found that the ovine prion protein PrP as well as its oligomeric and fibrillar forms are capable of binding with the chaperonin GroEL. Besides, GroEL was shown to promote amyloid aggregation of the monomeric and oligomeric PrP as well as PrP fibrils. The monomeric PrP was shown to inhibit the GroEL-assisted reactivation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The oligomers of PrP decelerate the GroEL-assisted reactivation of GAPDH, and PrP fibrils did not affect this process. The chaperonin GroEL is capable of interacting with GAPDH and different PrP forms simultaneously. A possible role of the inhibition of chaperonins by amyloid proteins in the misfolding of the enzymes involved in cell metabolism and in progression of neurodegenerative diseases of amyloid nature is discussed.  相似文献   

17.
Human respiratory syncytial virus (RSV) encodes a small hydrophobic (SH) protein, whose function in the life cycle of the virus is unknown. Recent channel activity measurements of the protein suggest that like other viroporins, SH may assemble into a homo-oligomeric ion channel. To further our understanding of this potentially important protein, a new strategy was implemented in order to model the transmembrane oligomeric bundle of the protein. Global searching molecular dynamic simulations of SH proteins from eight different viral strains, each at different oligomeric states, as well as different lengths of the putative transmembrane domain, were undertaken. Taken together, a total of 45 different global molecular dynamic simulations pointed to a single pentameric structure for the protein that was found in all of the different variants. The model of the structure obtained is a channel-like homopentamer whose minimal transmembrane pore diameter is 1.46 A.  相似文献   

18.
Several different receptor proteins have been identified that bind monomeric, oligomeric, or fibrillar forms of amyloid-β (Aβ). “Good” receptors internalize Aβ or promote its transcytosis out of the brain, whereas “bad” receptors bind oligomeric forms of Aβ that are largely responsible for the synapticloss, memory impairments, and neurotoxicity that underlie Alzheimer disease. The prion protein both removes Aβ from the brain and transduces the toxic actions of Aβ. The clustering of distinct receptors in cell surface signaling platforms likely underlies the actions of distinct oligomeric species of Aβ. These Aβ receptor-signaling platforms provide opportunities for therapeutic intervention in Alzheimer disease.  相似文献   

19.
We isolated a protein, P45, from the extreme halophilic archaeon Haloarcula marismortui, which displays molecular chaperone activities in vitro. P45 is a weak ATPase that assembles into a large ring-shaped oligomeric complex comprising about 10 subunits. The protein shows no significant homology to any known protein. P45 forms complexes with halophilic malate dehydrogenase during its salt-dependent denaturation/renaturation and decreases the rate of deactivation of the enzyme in an ATP-dependent manner. Compared with other halophilic proteins, the P45 complex appears to be much less dependent on salt for its various activities or stability. In vivo experiments showed that P45 accumulates when cells are exposed to a low salt environment. We suggest, therefore, that P45 could protect halophilic proteins against denaturation under conditions of cellular hyposaline stress.  相似文献   

20.
The relationship between the molecular weight and the number of subunits in oligomeric globular proteins consisting of identical subunits has been analyzed. It has been shown that the molecular weights of the subunits are distributed about a mean value of 48,000 and consequently that the molecular weights of the native oligomeric proteins are distributed in clearly distinguishable molecular weight regions. This observation allows the probability of a particular oligomeric structure to be predicted from a measurement of the oligomer molecular weight alone, which is useful in a number of types of study of protein structure, particularly comparative studies. Calculations have been performed which suggest that there is no thermodynamic limitation, in terms of the subunit interactions themselves, to the size of an oligomeric protein with a given number of subunits. Rather, an individual polypeptide chain itself has inherent size limitations, which consequently limits the molecular weight of the corresponding oligomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号