首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary Up to now Antirrhinum was classified as a typical example for a uniparentalmaternal inheritance of the plastids. However, the findings reported here prove that also the male gametophyte of Antirrhinum may occasionally transmit plastids into the egg. This conclusion is based on genetic experiments involving a form of the plastom mutant prasinizans which is described as gelbgrüne prasinizans. In contrast to all other plastid mutations known in Antirrhinum majus this mutant originated in Sippe 50 is completely viable. In plants containing plastids of this mutant type only, the mutant character is manifested during early growth stages. Cotyledons and first foliage leaves which are initially white or white yellow, slowly turn green and become indistinguishable from normal Sippe 50. Reciprocal crosses of green Sippe 50 with gelbgrüne prasinizans gave few variegated descendants; the others were exclusively plants identical with the maternal parent as far as leaf colour is concerned (Table). The variegated individuals cannot be gene mutants since selfing and crossing experiments showed non-mendelian inheritance. Furthermore it could be ruled out that in the cross Sippe 50 x gelbgrüne prasinizans the three variegated descendants represent spontaneous new plastom mutants because the pale tissue in these plants turned green in the same way as the paternal parent. Because of the typical greening of this mutant and since plastid mutations could be ruled out we have to conclude that plastids were transmitted by the pollen parent into the egg. There these plastids multiplied together with the maternal plastids giving rise to the chimeras after sorting-out of the two plastid types. This interpretation is supported by the observation of mixed cells in tissues where the leaf variegation is finely mosaiced. The results were possible only because the plastids of the pollen parent can be unequivocally recognised.  相似文献   

2.
A new species Dolichopteryx minuscula is described on the basis of three specimens [49.4–59.6 mm in standard length (SL)] collected from the Indo-West Pacific. The new species is characterized by pouchlike eyes with a small lens (lens diameter 2.2% SL), an adipose fin, the anal fin base originating posterior to the dorsal fin base, and 16–17 (= 5–6 + 1 + 10–11) gill rakers. Total fecundity was relatively low, only 658 ova being obtained from one specimen, despite the ovary being mature. Ovarian eggs were clearly subdivided into “undeveloped” (0.1–0.7 mm diameter classes, n = 561) and “developed” (1.0–1.3 mm classes, n = 97) groups, based on their frequency distribution. Such relatively low fecundity and frequency distributions of ovarian eggs suggest that Dolichopteryx species spawn iteratively during spawning season.  相似文献   

3.
Gene flow from genetically modified (GM) crops to conventional non-GM crops is a serious concern for protection of conventional and organic farming. Gene flow from GM watermelon developed for rootstock use, containing cucumber green mottle mosaic virus (CGMMV)-coat protein (CP) gene, to a non-GM isogenic control variety “Clhalteok” and grafted watermelon “Keumcheon” was investigated in a small scale field trial as a pilot study. Hybrids between GM and non-GM watermelons were screened from 1304 “Chalteok” seeds and 856 “Keumcheon” seeds using the duplex PCR method targeting theCGMMV- CP gene as a marker. Hybrids were found in all pollen recipient plots. The gene flow frequencies were greater for “Chaiteok” than for “KeumcheonD; with 75% outcrossing in the “Chaiteok” plot at the closest distance (0.8 m) to the GM plot. A much larger scale field trial is necessary to identify the isolation distance between GM and non-GM watermelon, as the behaviors of insect pollinators needs to be clarified in Korea.  相似文献   

4.
Stoebe B  Maier UG 《Protoplasma》2002,219(3-4):123-130
Summary. Plastids were acquired by different strategies. While in primary endosymbiosis a cyanobacterium was engulfed by a eukaryotic cell and reduced to a plastid, secondarily evolved plastids trace back to an enslaved red or green alga. Nature's recent playground in merging organisms together can be detected in dinoflagellates, which developed additional strategies to acquire their solar-powered factory. Some dinoflagellates possess secondary plastids, other species temporarily use “stolen plastids” of different origin. The highest degree of complexity is reached in dinoflagellates with chloroplasts originating from the uptake of a photosynthetic symbiont with secondary plastids, a process termed tertiary endosymbiosis. Received June 18, 2001 Accepted January 11, 2002  相似文献   

5.
Summary Green and albino plants were regenerated from green and white tissues, respectively, of a chimeric,Episcia cupreata “Pink Brocade.” The green plants grew much faster in vitro than the albinos. The slower growth of albinos apparently was not the result of carbohydrate deficiency, as it could not be corrected by increased sucrose. Growth of the albinos was also not improved by supplementation with various amino acids, growth hormones, or Δ-aminolevulinic acid. Paper of the Journal Series, New Jersey Agricultural Station, Cook College, Rutgers—The State University, New Brunswick, New Jersey 08903.  相似文献   

6.
Nautilus species are the only remaining cephalopods with an external shell. Targeted heavily by the shell trade across their distribution area, these species have a poorly known population structure and genetics. Molecular techniques have been used to assess levels of inter- and intra-population genetic diversity in isolated populations of Nautilus in the northern sections of the Great Barrier Reef (GBR), Australia and in the Coral Sea. Distinct populations, physically separated by depths in excess of 1,000 m were examined. RAPD analysis of genetic differences showed limited differentiation of the “Northern GBR” populations and the “Coral Sea” populations. Discrimination between the two geographic groups was observed from these data. In addition, partial sequencing of the CoxI gene region, yielded 575 bp of sequence, which was aligned for 43 samples and phylogenetic trees constructed to examine genetic relationships. Two distinct clades were resolved in the resulting trees, representing the “Northern GBR” and “Coral Sea” population groups. Inter- and intra-population relationships are presented and discussed. The differentiation of the Nautilus populations from the Northern section of the Great Barrier Reef and those from the Coral Sea were supported by two distinctly different methodologies and the significance of this separation and the potential evolutionary divergence of these two population groups is discussed.  相似文献   

7.
Tao N  Hu Z  Liu Q  Xu J  Cheng Y  Guo L  Guo W  Deng X 《Plant cell reports》2007,26(6):837-843
Citrus is an important fruit crop as regards accumulation of carotenoids. In plant carotenoid biosynthesis, phytoene synthase gene (Psy) plays a key role in catalyzing the head-to-head condensation of geranylgeranyl diphosphate molecules to produce colorless phytoene. In the present paper, we reported the phytoene contents determination and characterization of Psy during fruit ripening of “Washington” navel orange and its red-fleshed mutant “Cara Cara”. Results showed that phytoene was exclusively accumulated in peel and pulp of “Cara Cara”. Although phytoene was observed accumulating with fruit ripening of “Cara Cara”, the contents in pulp were 10 times higher than those in peel. The isolated two Psy cDNAs were both 1520 bp in full length, containing 436 deduced amino acid residues, with a different amino acid at 412th. Genomic hybridization results showed that one or two copies might be present in “Cara Cara” and “Washington” genomes. During “Cara Cara” and “Washington” fruit coloration, expression of Psy was observed to be up-regulated, as revealed by tissue specific profiles in the flavedo, albedo, segment membrane and juice sacs. However, Psy expression in albedo of “Cara Cara” was higher than that in “Washington”, as evidenced by phytoene accumulation in the peel.  相似文献   

8.
Acetolactate synthase (ALS) catalyzes the first committed step in the synthesis of branched-chain amino acids. In green plants and fungi, ALS is encoded by a nuclear gene whose product is targeted to plastids (in plants) or to mitochondria (in fungi). In red algae, the gene is plastid-encoded. We have determined the complete sequence of nucleus-encoded ALS genes from the green algae Chlamydomonas reinhardtii and Volvox carteri. Phylogenetic analyses of the ALS gene family indicate that the ALS genes of green algae and plants are closely related, sharing a recent common ancestor. Furthermore, although these genes are clearly of eubacterial origin, a relationship to the ALS genes of red algae and cyanobacteria (endosymbiotic precursors of plastids) is only weakly indicated. The algal ALS genes are distinguished from their homologs in higher plants by the fact that they are interrupted by numerous spliceosomal introns; plant ALS genes completely lack introns. The restricted phylogenetic distribution of these introns suggests that they were inserted recently, after the divergence of these green algae from plants. Two introns in the Volvox ALS gene, not found in the Chlamydomonas gene, are positioned precisely at sites which resemble “proto-splice” sequences in the Chlamydomonas gene. Received: 27 November 1998 / Accepted: 21 April 1999  相似文献   

9.
Quantitative cell and organelle dynamics of the male gamete-producing lineage of Plumbago zeylanica were examined using serial transmission electron microscopic reconstruction at five stages of development from generative cell inception to sperm cell maturity. The founder population of generative cell organelles includes an average of 3.88 plastids, 54.9 mitochondria, and 3.7 vacuoles. During development the volume of the pollen grain increases from 6,200 μm3 in early microspores to 115,000 μm3 at anthesis, cell volume of the male germ lineage decreases more than 67% from 362.3 μm3 to 118.4 μm3. By the time the generative cell separates from the intine, plastid numbers increase by >600%, mitochondria by 250%, and vesicles by 43 times. A cellular projection elongates toward and establishes an association with the vegetative nucleus; this leading edge contains plastids and numerous mitochondria. When the generative cell completes its separation from the intine, organellar polarity is reversed and plastids migrate to the opposite pole of the cell. Cytoplasmic microtubules are common in association with cellular organelles. Plastids accumulate at the distal end of the cell as a linked mass, apparently adhered by lateral electron dense regions. Before division of the highly polarized generative cell, plastids decrease in number by 16%, whereas mitochondria increase by ∼90% and vacuoles increase by ∼140% from the prior stage. After mitosis, the resultant sperm cells differ in size and organelle content. The sperm cell associated with the vegetative nucleus (Svn) contains 62.7% of the cytoplasm volume, 87% of the mitochondria, 280.4 vesicles (79% of those in the generative cell), and 0.6% of the plastids. At maturity, the Svn mitochondria increase by 31% and the cell contains an average of 0.4 plastids, 158.9 vesicles, and 0.36 microbodies. The mature unassociated sperm (Sua) contains 39.8 mitochondria (up 3.3%), 24.3 plastids (down 31%), 91.1 vesicles (up 54.9%), and 3.18 microbodies. The small number of organelles initially in the generative cell, followed by their rapid multiplication in a shrinking cytoplasm suggests a highly competitive cytoplasmic environment that would tend to eliminate residual organellar heterogeneity. Cell and cytoplasmic volumes vary as a consequence of fluctuations in the number and size of large vesicles or vacuoles, as well as loss of cytoplasmic volume by (1) formation of “false cells” involving amitotic cytokinesis, (2) “pinching off” of cytoplasm, and (3) dehydration of pollen contents prior to anthesis.  相似文献   

10.
Summary Initial trials with tomato-root cultures disclosed the desirability of employing a gently agitated liquid medium containing iron in the chelated form. For the normal cultivars “Ace” and “Tropic”, subcultures were best achieved by utilizing sectors that possessed one or more newly emerged laterals. Continuous cultures of a nonlateral-forming tomato mutant, “Diageotropica”, and of citron were accomplished by subculturing tips of the elongating primary roots. The tomato roots were cultured in White's medium with the Fe2(SO4)3 replaced by 0.03 mM NaFeEDTA. Sustained growth of citron-root tips necessitated the use of a medium containing Murashige and Skoog salts, 7.5% sucrose, 100 mg per I each of citric acid and thiamine HCl, and 5000 mg per li-inositol. The success with citron-root cultures was extendable to all cultivars ofC. medica L., but not to otherCitrus species relatives. Both citron and “Diageotropica” root cultures manifested undiminished elongation through repeated subcultures; but neither produced laterals in response to any cultural treatments. Research was supported in part by National Science Foundation Grant OIP75-10390 and Elvenia J. Slosson Fellowship in Ornamental Horticulture.  相似文献   

11.
We conducted a 2-year field assessment of the gene flow from genetically modified (GM) chili pepper (Capsicum annuum L.), containing the PepEST (pepper esterase) gene, to a non-GM control line “WT512” and two commercial hybrid cultivars, “Manidda” and “Cheongpung Myeongwol (CM).” After seeds were collected from the pollen-recipient non-GM plants, hybrids between them and the GM peppers were screened by a hygromycin assay. PCR with the targeting hpt gene was performed to confirm the presence of transgenes in hygromycin-resistant seedlings. Out of 7,071 “WT512” seeds and 6,854 “Manidda” seeds collected in 2006, eight and 12 hybrids, respectively, were detected. In 2007, 33 hybrids from 3,456 “WT512” seeds and 50 hybrids from 3,457 “CM” seeds were found. The highest frequency of gene flow, 6.19%, was observed in that 2007 trial. These results suggest that a limited isolation distance would be sufficient to prevent gene flow from GM to conventionally bred chili peppers.  相似文献   

12.
R. M. Beach  J. W. Todd 《BioControl》1986,31(3):237-242
Field grown foliage from the resistant soybean [Glycine max (L.) Merrill] breeding line GAT “81–327” and the susceptible cultivar “Ransom” was used to rear unparasitized larvae of the soybean looper (SBL),Pseudoplusia includens (Walker), and larvae parasitized byCopidosoma truncatellum (Dalman). SBL larvae, whether parasitized or not, consumed more foliage when fed “Ransom”. Unparasitized larvae reared on “81–327” had longer developmental times and suffered greater mortality than unparasitized larvae reared on “Ransom”. Parasitization of SBL larvae byC. truncatellum increased total foliage consumption of both soybean lines. Parasitized larvae reared on the resistant “81–327” weighed less and yielded fewer parasitoid adults.
Résumé Des larves dePseudoplusia includens (Walker) parasitées ou non parCopidosoma truncatellum (Dalman) ont été nourries des feuilles de deux lignées de soja [Glycine max (L.) Merrill] l'une, GAT “81–327” résistante et l'autre, “Ransom” sensible. Les larves deP. includens qu'elles soient parasitées ou non consommaient plus de feuillage lorsqu'elles étaient nourries de la lignée “Ransom”. Les larves non parasitées élevées sur “81–327” avaient un cycle de développement beaucoup plus long et un taux de mortalité beaucoup plus élevé que les larves non parasitées élevées comparativement sur feuilles de “Ransom”. Par contre, les larves parasitées manifestaient une consommation accrue du feuillage des deux lignées de soja. Les larves parasitées élevées sur les feuilles de la variété résistante GAT “81–327” pesaient moins et produisaient moins également de parasites adultes.
  相似文献   

13.
14.
Two new phototrophic consortia, “Chlorochromatium lunatum” and “Pelochromatium selenoides”, were observed and collected in the hypolimnion of several dimictic lakes in Wisconsin and Michigan (USA). The two consortia had the same morphology but different pigment composition. The cells of the photosynthetic components of the consortia were half-moon-shaped. This morphology was used to differentiate them from the previously described motile phototrophic consortia “Chlorochromatium aggregatum” and “Pelochromatium roseum”. These phototrophic cells did not resemble any described unicellular green sulfur bacteria. The predominant pigments detected were bacteriochlorophyll d and chlorobactene for the green-colored “Clc. lunatum”, and bacteriochlorophyll e and isorenieratene for the brown-colored “Plc. selenoides”. Their pigment compositions and the presence of chlorosomes attached to the inner face of the cytoplasmic membrane in both kinds of photosynthetic cells confirmed this new half-moon-shaped morphotype as a green sulfur bacterium. Both consortia were found thriving in lakes with low concentrations of sulfide (< 60 μM), below the layers of “Clc. aggregatum” and “Plc. roseum”. The green consortia were observed in lakes where the oxic-anoxic interface was located at shallow depths (2–7 m), while the brown consortia were found at greater depths (8–16 m). The two newly described consortia were never detected together at the same depth in any lake. Received: 30 April 1997 / Accepted: 17 January 1998  相似文献   

15.
Oldenlandia umbellata L., commonly known as “Indian madder”, is an ancient Indian herb valued as a source of red color dye and various medicinal products. In this study, successful protocols have been developed for induction of somatic embryogenesis and organogenesis in O. umbellata. Emerging young leaves, shoot apices, and stems were used as explants, grown on Murashige and Skoog (MS) media supplemented with various auxins, including indole acetic acid, indole butyric acid, napthaleneacetic acid (NAA), and 2,4-Dichlorophenoxyacetic acid, each at levels ranging between 0.1 and 0.5 mg/l, cytokinins, including benzyladenine (BA) and kinetin, each at concentration ranging between 0.5 and 5 mg/l, with and without coconut milk (CM) at levels of 0.5–5%. For callus induction, NAA at 2.5 mg/l was optimal; while, for rapid embryogenic callus induction, 0.2 mg/l NAA, 0.5 mg/l BA, and 0.1% CM induced the highest frequency (95.86%). Shoots developed upon transfer of embryogenic calli to MS medium containing 1.5 mg/l BA, 0.3 mg/l NAA and 1% CM. For root induction, 0.3 mg/l NAA and 1.0% CM promoted highest and earliest rooting. C. Rajasekaran contributed equally to this work.  相似文献   

16.
Two novel non-allelic mutants that were unable to fix nitrogen (Fix) were obtained after EMS (ethyl methyl sulfonate) mutagenesis of pea (Pisum sativum L.). Both mutants, SGEFix–1 and SGEFix–2, form two types of nodules: SGEFix–1 forms numerous white and some pink nodules, while mutant SGEFix–2 forms white nodules with a dark pit at the distal end and also some pinkish nodules. Both mutations are monogenic and recessive. In both lines the manifestation of the mutant phenotype is associated with the root genotype. White nodules of SGEFix–1 are characterised by hypertrophied infection threads and infection droplets, mass endocytosis of bacteria, abnormal morphological differentiation of bacteroids, and premature degradation of nodule symbiotic structures. The structure of the pink nodules of SGEFix–1 does not differ from that of the parental line, SGE. White nodules of SGEFix–2 are characterised by “locked” infection threads surrounded with abnormally thick plant cell walls. In these nodules there is no endocytosis of bacteria into host-cell cytoplasm. The pinkish nodules of SGEFix–2 are characterised by virtually undifferentiated bacteroids and premature degradation of nodule tissues. Thus, the novel pea symbiotic genes, sym40 and sym33, identified after complementation analysis in SGEFix–1 and SGEFix–2 lines, respectively, control early nodule developmental stages connected with infection thread formation and function. Received: 12 June 1998 / Accepted: 25 June 1998  相似文献   

17.
The electrophoretic patterns of 15 protein systems codified for 20 genetic loci were investigated using horizontal electrophoresis. A total of 150 blood samples, from five species of the genusCallithrix were analyzed. Polymorphic variation was observed in 10 out 20 loci analyzed. The genotypic distributions are in Hardy-Weinberg equilibrium. The average heterozygosity (H) varied from 1% to 5%, similar to those observed for other Neotropical primates. The genetic distance coefficients revealed a phylogenetic separation of these species into two groups: (1) “argentata” (C. humeralifer andC. emiliae); (2) “jacchus” (C. jacchus, C. penicillata, andC. geoffroyi). This arrangement is according to the taxonomic arrangement proposed byHershkovitz (1977),de Vivo (1988), andMittermeier et al. (1988). The results in each group are compatible with the subspecies values recorded for the Platyrrhini. These values showed that:C. humeralifer andC. emiliae are subspecies ofC. argentata;C. jacchus, C. penicillata, andC. geoffroyi are subspecies ofC. jacchus. These results also suggest thatC. j. geoffroyi is the “jacchus” group taxon, most similar genetically to the “argentata” group.  相似文献   

18.
Two skulls, two mandibles and some postcranials ofMesopithecus from the locality “Vathylakkos 2” of Axios Valley (Macedonia, Greece) enlarge our knowledge about the genus and its differentiation. The new material together with an old skull from the same locality is compared with the Pikermi, “Ravin des Zouaves 5” (Axios Valley), and Maramena (Serres basin) samples. It is concluded that the VathylakkosMesopithecus resemblesM. pentelicus from Pikermi, as wellM. delsoni from “Ravin des Zouaves 5” and it is referred asMesopithecus sp. aff.M. pentelicus. The biochronological age of “Vathylakkos 2” has been considered as MN 12, while recent magnetostratigraphic data indicate an age of about 7.5 Ma. This age confirms the position of the VathylakkosMesopithecus between Pikermi and “Ravin des Zouaves 5”. Some dental indices compared with those of the RecentCercopithecus suggest that the Vathylakkos sample is monospecific.   相似文献   

19.
The systematics and taxonomy of Kappaphycus and Eucheuma (Solieriaceae) is confused and difficult due to morphological plasticity, lack of adequate characters to identify species and commercial names of convenience. These taxa are geographically widely dispersed through cultivation. Commercial, wild and herbarium sources were analysed; molecular markers provided insights into taxonomy and genetic variation, and where sources of genetic variation may be located. The mitochondrial cox2-3 and plastidal RuBisCo spacers were sequenced. There is a clear genetic distinction between K. alvarezii (“cottonii”) and K. striatum (“sacol”) samples. Kappaphycus alvarezii from Hawaii and some samples from Africa are also genetically distinct. Our data also show that all currently cultivated K. alvarezii from all over the world have a similar mitochondrial haplotype. Within Eucheuma denticulatum (“spinosum”) most African samples are again genetically distinct. Our data also suggest that currently cultivated E. denticulatum may have been “domesticated” several times, whereas this is not evident for the cultivated K. alvarezii. The present markers used do not distinguish all the morpho-types known in cultivation (e.g. var. tambalang, “giant” type) but do suggest that these markers may be useful to assess introductions and species identification in samples.  相似文献   

20.
Adult females of the praying mantisTenodera angustipennis were presented with computer-generated images, and the attractiveness of “non-locomotive” prey models was examined. Mantises fixated and struck the “body and leg” model (consisting of an immobile black square on a white background with 2 black lines oscillating randomly at its sides) more frequently than the “leg” model (only oscillating lines) or the “body” model (static square only). This indicates that the model consisting of a static object and moving lines effectively elicits mantis strike behavior, although it is “non-locomotive.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号