首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have labeled the nucleoside triphosphate-binding domain of Escherichia coli rho factor with the ATP affinity analog [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP completely inactivates the RNA-dependent ATPase activity of rho upon incorporation of 3 mol of reagent/mol of hexameric rho protein. Although the potency of PLP-AMP is enhanced when an RNA substrate such as poly(C) is present, the stoichiometry for inhibition remains the same as in the absence of poly(C). The nucleotide substrate ATP competes very effectively for the binding site and protects against PLP-AMP inactivation. A domain of rho called N2, which comprises the distal two-thirds of the molecule (residues 152-419) and encompasses the region proposed to bind ATP, is labeled specifically in the presence of poly(C). Amino acid sequence analysis of the single [3H]PLP-AMP labeled proteolytic fragment showed Lys181 to be the site of modification, suggesting that this residue normally interacts with the gamma-phosphoryl of bound ATP. These results agree with our proposed tertiary structure for the ATP-binding domain of rho that places this lysine residue in a flexible loop above a hydrophobic nucleotide-binding pocket comprised of several parallel beta-strands, similar to adenylate kinase, F1-ATPase, and related ATP-binding proteins. Parallel studies of rho structure and function by site-directed mutagenesis and chemical modification support this interpretation.  相似文献   

2.
D C Au  H R Masure  D R Storm 《Biochemistry》1989,28(7):2772-2776
A 2.7-kb cya A gene fragment encoding the amino-terminal end of the calmodulin-sensitive adenylate cyclase from Bordetella pertussis has been placed under the control of the lac promoter for expression in Escherichia coli. Following induction with isopropyl beta-D-thiogalactoside, calmodulin-sensitive adenylate cyclase activity was detected in a cell extract from E. coli. The expression vector directed the synthesis of a 90-kDa polypeptide that was recognized by rabbit polyclonal antibodies raised against the catalytic subunit of B. pertussis adenylate cyclase. Inspection of the deduced amino acid sequence of the cya A gene product revealed a sequence with homology to consensus sequences for an ATP-binding domain found in many ATP-binding proteins. On the basis of the analysis of nucleotide binding proteins, a conserved lysine residue has been implicated in the binding of ATP. A putative ATP-binding domain in the B. pertussis adenylate cyclase possesses an analogous lysine residue at position 58. To test whether lysine 58 of the B. pertussis adenylate cyclase is a crucial residue for enzyme activity, it was replaced with methionine by oligonucleotide-directed mutagenesis. E. coli cells were transformed with the mutant cya A gene, and the expressed gene product was characterized. The mutant protein exhibited neither basal nor calmodulin-stimulated enzyme activity, indicating that lysine 58 plays a critical role in enzyme catalysis.  相似文献   

3.
A 50-amino acid peptide predicted by chemical modification studies of F1 and by comparison with adenylate kinase to comprise part of an ATP-binding domain within the beta-subunit of mitochondrial ATP synthase has been synthesized and purified. In the numbering system used for bovine heart beta, the peptide consists of amino acid residues from aspartate 141 at the N-terminal end to threonine 190 at the carboxyl end. In Tris-Cl buffer, pH 7.4, the peptide undergoes a dramatic reaction with ATP resulting in precipitate formation. Analysis of the precipitate shows it to contain both peptide and ATP. Similar to the ATPase activity of F1 and the binding of nucleotide to the enzyme, the capacity of ATP to induce precipitation of the peptide is decreased markedly by lowering pH. Interaction of the peptide with the fluorescent ATP analog, TNP-ATP (2'(3')-O-(2,4-6-trinitrophenyl)-adenosine 5'-triphosphate), can be demonstrated in solution at low concentrations. A 7-fold enhancement in fluorescence is observed when 2.5 microM TNP-ATP interacts with 2.5 microM peptide. Divalent cation is neither required for ATP-induced precipitation of the peptide nor for demonstrating interaction between TNP-ATP and peptide, just as Mg2+ is not required for nucleotide binding to F1. These results indicate that the beta-subunit peptide studied here comprises at least part of a nucleotide-binding domain within the mitochondrial ATP synthase complex.  相似文献   

4.
Randak C  Welsh MJ 《Cell》2003,115(7):837-850
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.  相似文献   

6.
ATP-binding cassette (ABC) enzymes are involved in diverse biological processes ranging from transmembrane transport to chromosome cohesion and DNA repair. They typically use ATP hydrolysis to conduct energy-dependent biological reactions. However, the cystic fibrosis transmembrane conductance regulator and the DNA repair protein Rad50 can also catalyze the adenylate kinase reaction (ATP + AMP ↔ 2ADP). To clarify and provide a mechanistic basis for the adenylate kinase activity of ABC enzymes, we report the crystal structure of the nucleotide-binding domain of the Pyrococcus furiosus structural maintenance of chromosome protein (pfSMCnbd) in complex with the adenylate kinase inhibitor P1,P5-di(adenosine-5′)pentaphosphate. We show that pfSMCnbd possesses reverse adenylate kinase activity. Our results suggest that in adenylate kinase reactions, ATP binds to its canonical binding site while AMP binds to the Q-loop glutamine and a hydration water of the Mg2+ ion. Furthermore, mutational analysis indicates that adenylate kinase reaction occurs in the engaged pfSMCnbd dimer and requires the Signature motif for phosphate transfer. Our results explain how ATP hydrolysis and adenylate kinase reactions can be catalyzed by the same functional motifs within the structural framework of ABC enzymes. Thus, adenylate kinase activity is likely to be a latent activity in many ABC enzymes.  相似文献   

7.
HBR1 (hemoglobin response gene 1) is an essential gene in Candida albicans that positively regulates mating type locus MTLα gene expression and thereby regulates cell type-specific developmental genes. Hbr1p contains a phosphate-binding loop (P-loop), a highly conserved motif characteristic of ATP- and GTP-binding proteins. Recombinant Hbr1p was isolated in an oligomeric state that specifically bound ATP with K(d) ~2 μM. ATP but not ADP, AMP, GTP, or dATP specifically protected Hbr1p from proteolysis by trypsin. Site-directed mutagenesis of the highly conserved P-loop lysine (K22Q) and the less conserved glycine (G19S) decreased the binding affinity for soluble ATP and ATP immobilized through its γ-phosphate. ATP bound somewhat more avidly than ATPγS to wild type and mutant Hbr1p. Although Hbr1p exhibits sequence motifs characteristic of adenylate kinases, and adenylate kinase and ATPase activities have been reported for the apparent human ortholog of Hbr1p, assays for adenylate kinase activity, autophosphorylation, and ATPase activity proved negative. Overexpression of wild type but not the mutant forms of Hbr1p restored MTlα2 expression in an HBR1/hbr1 mutant, indicating that ATP binding to the P-loop is necessary for this function of Hbr1p.  相似文献   

8.
Summary The mechanism of iron(III)hydroxamate transport appears to be of the periplasmic binding protein dependent transport (PBT) kind which is energized by ATP hydrolysis. The FhuC protein contains two domains typical of ATP-binding proteins. Lysine in domain I was replaced by glutamine and glutamate, and aspartate in domain II by asparagine and glutamate, resulting in FhuC derivatives which no longer transported ferrichrome and albomycin. FhuC inactivation by the aspartate-glutamate substitution is especially noteworthy since the negative charge thought to be involved in Mg2+-ATP binding remains the same and the two amino acid side chains differ in only a CH2 group. It is concluded that the two domains that represent consensus sequences among all peripheral cytoplasmic membrane proteins of PBT systems are involved in substrate transport.  相似文献   

9.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   

10.
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.  相似文献   

11.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

12.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural maintenance of chromosome (SMC) protein, challenge the model that the function of all ABC proteins depends solely on their associated ATPase activity. Patch clamp studies indicated that in the presence of physiologically relevant concentrations of adenosine 5′-monophosphate (AMP), CFTR Cl channel function is coupled to adenylate kinase activity (ATP+AMP ⇆ 2 ADP). Work with Rad50 and SMC showed that these enzymes catalyze both ATPase and adenylate kinase reactions. However, despite the supportive electrophysiological results with CFTR, there are no biochemical data demonstrating intrinsic adenylate kinase activity of a membrane-bound ABC transporter. We developed a biochemical assay for adenylate kinase activity, in which the radioactive γ-phosphate of a nucleotide triphosphate could transfer to a photoactivatable AMP analog. UV irradiation could then trap the 32P on the adenylate kinase. With this assay, we discovered phosphoryl group transfer that labeled CFTR, thereby demonstrating its adenylate kinase activity. Our results also suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for adenylate kinase activity. These biochemical data complement earlier biophysical studies of CFTR and indicate that the ABC transporter CFTR can function as an adenylate kinase.  相似文献   

14.
Human P-glycoprotein, the MDR1 gene product, requires both Mg(2+)-ATP binding and hydrolysis to function as a drug transporter; however, the mechanism(s) defining these events is not understood. In the present study, we explored the nature of Mg(2+)-ATP binding in the N-terminal nucleotide-binding domain of human P-glycoprotein and identified the minimal functional unit required for specific ATP binding. Recombinant proteins encompassing amino acids within the region beginning at 348 and ending at 707 were expressed in Escherichia coli, purified from inclusion bodies under denaturing conditions, and renatured by rapid dilution. The ability of ATP to interact with these proteins was examined by use of the photoactive ATP analogue [alpha-(32)P]-8-azido-ATP. Photoaffinity labeling of recombinant proteins identified the region between amino acids 375 and 635 as the region necessary to obtain specific ATP-binding properties. Specific protein labeling was saturable, enhanced by Mg(2+), and inhibited by ATP. Recombinant proteins confined within the region beginning at amino acid 392 and ending at amino acid 590 demonstrated nonspecific [alpha-(32)P]-8-azido-ATP labeling. Nonspecific labeling was not enhanced by Mg(2+) and was inhibited only by high concentrations of ATP. Using a D555N mutated protein, we found that the conserved aspartate residue in the Walker B motif plays a role in magnesium-enhanced ATP-binding. Taken together, these data define the region of the N-terminal nucleotide-binding domain of P-glycoprotein that is required for specific ATP binding and suggest that magnesium may play a role in stabilizing the ATP-binding site.  相似文献   

15.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Selection of functional RNAs from randomized pool of RNA molecules successfully affords RNA aptamers that specifically bind to small molecules, and that have catalytic activities. Recent structural analyses of the ribosomal RNA complex suggest that the RNA-protein complex would be a new structural candidate for the design of tailor-made receptors and enzymes. We have designed an ATP binding domain that consists of an RNA subunit and a peptide subunit by means of structure-based design approach and successive in vitro selection method. The RNA subunit is designed to consist of two functional domains; an ATP binding domain with 20 randomized nucleotides and an adjacent stem region that serves as a binding site for the RNA-binding peptide. The randomized nucleotide region was placed next to the HIV-1 Rev response element to enable the formation of "ribonucleopeptide" pools in the presence of the Rev peptide. In vitro selection of RNA oligonucleotides from the randomized pool afforded a ribonucleopeptide receptor specific for ATP. The ATP-binding ribonucleopeptide did not share the known consensus nucleotide sequence for ATP aptamers, and completely lost its ATP-binding ability in the absence of the Rev peptide. The ATP-binding activity of the ribonucleopeptide was increased by a substitution of the N-terminal amino acid of the Rev peptide. These results demonstrate that the peptide stabilizes the functional structure of RNA and suggest that amino acids outside the RNA binding region of the peptide participate in the ATP binding. Our approach would provide a new strategy for the design of tailor-made ribonucleopeptide receptors.  相似文献   

17.
In order to better understand ligand-induced closure in domain enzymes, open unliganded X-ray structures and closed liganded X-ray structures have been studied in five enzymes: adenylate kinase, aspartate aminotransferase, citrate synthase, liver alcohol dehydrogenase, and the catalytic subunit of cAMP-dependent protein kinase. A sequential model of ligand binding and domain closure was used to test the hypothesis that the ligand actively drives closure from an open conformation. The analysis supports the assumption that each enzyme has a dedicated binding domain to which the ligand binds first and a closing domain. In every case, a small number of residues are identified to interact with the ligand to initiate and drive domain closure. In all cases except adenylate kinase, the backbone of residues located in an interdomain-bending region (hinge site) is identified to interact with the ligand to aid in driving closure. In adenylate kinase, the side-chain of a residue located directly adjacent to a bending region drives closure. It is thought that by binding near a hinge site the ligand is able to get within interaction range of residues when the enzyme is in the open conformation. Interdomain bending regions not involved in inducing closure are involved in control, helping to determine the location of the hinge axis. Similarities have been discovered between aspartate aminotransferase and citrate synthase that only come to light in the context of their dynamical behaviour in response to binding their substrate. Similarity also exists between liver alcohol dehydrogenase and cAMP-dependent protein kinase whereby groups on NAD and ATP, respectively, mimic the backbone of a single amino acid residue in a process where a three residue segment located at the terminus of a beta-sheet, moves to form hydrogen bonds with the mimic that resemble those found in a parallel beta-sheet. This interaction helps to drive domain closure in a process that has analogy to protein folding.  相似文献   

18.
Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.  相似文献   

19.
We present evidence that cysteine 269 of the small subunit of Escherichia coli carbamyl phosphate synthetase is essential for the hydrolysis of glutamine. When cysteine 269 is replaced with glycine or with serine by site-directed mutagenesis of the carA gene, the resulting enzymes are unable to catalyze carbamyl phosphate synthesis with glutamine as nitrogen donor. Even though the glycine 269, and particularly the serine 269 enzyme bind significant amounts of glutamine, neither glycine 269 nor serine 269 can hydrolyze glutamine. The mutations at cysteine 269 do not affect carbamyl phosphate synthesis with NH3 as substrate. The NH3-dependent activity of the mutant enzymes was equal to that of wild-type. Measurements of Km indicate that the enzyme uses unionized NH3 rather than ammonium ion as substrate. The apparent Km for NH3 of the wild-type enzyme is calculated to be about 5 mM, independent of pH. The substitution of cysteine 269 with glycine or with serine results in a decrease of the apparent Km value for NH3 from 5 mM with the wild-type to 3.9 mM with the glycine, and 2.9 mM with the serine enzyme. Neither the glycine nor the serine mutation at position 269 affects the ability of the enzyme to catalyze ATP synthesis from ADP and carbamyl phosphate. Allosteric properties of the large subunit are also unaffected. However, substitution of cysteine 269 with glycine or with serine causes an 8- and 18-fold stimulation of HCO-3 -dependent ATPase activity, respectively. The increase in ATPase activity and the decrease in apparent Km for NH3 provide additional evidence for an interaction of the glutamine binding domain of the small subunit with one of the two known ATP sites of the large subunit.  相似文献   

20.
A region of the primary amino acid sequence of the epidermal growth factor receptor (EGF) protein-tyrosine kinase, which is involved in ATP binding, was identified using chemical modification and immunological techniques. EGF receptor was 14C-labelled with the ATP analogue 5'-p-fluorosulphonylbenzoyladenosine and from a tryptic digest a single radiolabelled peptide was isolated. The amino acid sequence was determined to be residues 716-724 and hence lysine residue 721 is located within the ATP-binding site. Antisera were elicited in rabbits to a synthetic peptide identical to residues 716-727 of the EGF receptor and the homologous sequence in v-erb B transforming protein from avian erythroblastosis virus. The affinity-purified antibodies precipitated human ECF receptor from A431 cells and placenta, and the v-erb B protein from erythroblasts. The antibodies inhibited EGF-stimulated receptor protein-tyrosine kinase autophosphorylation and phosphorylation of an exogenous peptide substrate containing tyrosine. The antibodies did not immunoprecipitate the transforming proteins pp60v-src or P120gag-abl or cAMP-dependent protein kinase, proteins which have homologous but not identical sequences surrounding the lysine residue within the ATP-binding site, nor did they react with the platelet-derived growth factor receptor. The antibodies had no effect on the kinase activity of purified v-abl protein in solution. The antibodies may therefore be a specific inhibitor of the tyrosine kinase of the EGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号