首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proteoglycans secreted by a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal human breast cell line (HBL-100). The physicochemical characteristics of these proteoglycans were established by hexosamine analysis, chemical and enzymatic degradations, and dissociative cesium chloride density gradient centrifugation, and by gel filtration before and after alkaline beta-elimination. Both cell lines secreted approximately 70% of the synthesized proteoglycans, which were composed of 20% heparan sulfate and 80% chondroitin sulfate proteoglycans. The MDA cell line secreted large hydrodynamic size (major) and small hydrodynamic size heparan sulfate proteoglycan. In contrast HBL cells secreted only one species having a hydrodynamic size intermediate to the above two. The chondroitin sulfate proteoglycans from MDA medium were slightly larger than the corresponding polymers from HBL medium. All proteoglycans except the small hydrodynamic size heparan sulfate proteoglycan from MDA medium were of high buoyant density. The proteoglycans of both cell lines contained significant proportions of disulfide-linked lower molecular weight components which were more pronounced in the proteoheparan sulfate polymers, particularly those from MDA medium, than in chondroitin sulfate proteoglycans. The glycosaminoglycans of heparan sulfate proteoglycans from MDA medium were more heterogeneous than those from HBL medium. The glycosaminoglycan chains of large hydrodynamic size heparan sulfate proteoglycans from MDA medium were larger in size than those from HBL medium while small hydrodynamic size heparan sulfate proteoglycans contained shorter glycosaminoglycan chains. In contrast to the glycosaminoglycans derived from chondroitin sulfate proteoglycans of both MDA and HBL medium were comparable in size. The heparan sulfate as well as chondroitin sulfate proteoglycans of both cell lines contained both neutral (di- and tetrasaccharides) and sialylated (tri- to hexasaccharides) O-linked oligosaccharides.  相似文献   

2.
Cationic lipid-DNA complexes are used as gene transfer vehicles in molecular biology and potentially in human gene therapy. In recent synchrotron X-ray scattering studies the molecular structure of such self-assembling aggregates was elucidated. A rich polymorphism of lamellar, hexagonal, lamellar-columnar and micellar mesophases was found. In this article we describe composite phases of cationic lipid mixed with hyaluronic acid and dextran sulfate which likewise form intercalated lamellar complexes. Heterogeneous phases of lipid/dextran sulfate mixed with lipid/DNA exhibit macroscopic phase separation. When dextran sulfate is added to preformed cationic lipid DNA complexes the latter are dissolved in favor of the lipid-polyelectrolyte phases. We investigated the kinetics of the DNA replacement by dextran sulfate. The experiments are intended to mimic the interaction of cationic lipid gene delivery complexes with highly charged extracellular matrix components.  相似文献   

3.
Pulmonary surfactants enhance adenovirus-mediated gene transfer but inhibit cationic liposome-mediated transfection in lung epithelial cells in vitro. This study examines the effect of the synthetic lung surfactant Exosurf on dendrimer-mediated transfection in eukaryotic cells. Exosurf significantly enhanced dendrimer-luciferase plasmid transfection in a number of cell lines and was very effective in primary cells. Luciferase expression increased up to 40-fold in primary normal human bronchial/tracheal epithelial cells (NHBE). FACScan analysis demonstrated that the transfection rate of the human T cell leukemia Jurkat cell line has significantly improved from 10 to 90% of cells at 24 h after transfection. Analysis of the components of Exosurf revealed that the nonionic surfactant tyloxapol was responsible for the enhancement of dendrimer-mediated gene transfer. The tyloxapol effect was due to increased cell membrane porosity and DNA uptake. Our results demonstrate that Exosurf and its component, tyloxapol, constitute a powerful enhancer for dendrimer-mediated gene transfer in vitro.  相似文献   

4.
The metabolism of heparan sulfate proteoglycan, a major product of human colon carcinoma cells, was investigated in a series of pulse-chase experiments using a combination of quantitative biochemistry and electron microscope autoradiography. This was possible primarily because these cells incorporate [35S]sulfate exclusively into heparan sulfate proteoglycan, thus allowing the possibility of correlating the two sets of information. The results showed a progressive movement of the newly synthesized proteoglycan from the Golgi to the cell surface, where it became closely associated with the plasma membrane and was labeled ultrastructurally by both ruthenium red and radiosulfate. Subsequently, about 55% was released into the medium (t1/2 approximately 2.5 h) where it resided as intact macromolecule and was neither endocytosed nor degraded further. The remaining 45% was internalized and converted into smaller species through a series of degradative steps. Initially (Step 1) there was proteolytic cleavage of the protein core and partial endoglycosidic cleavage of the heparan sulfate chains (t1/2 approximately 6 h), with generation of larger glycosaminoglycan-peptide intermediates with chains of Mr approximately 10,000, about one-third their original size. These components were subsequently converted (Step 2) to yet smaller, limiting fragments of Mr approximately 5,000, which were finally depolymerized (Step 3) with quantitative release of free sulfate. The intracellular degradation of the proteoglycan, particularly Steps 2 and 3, was markedly inhibited by choloroquine, implicating the involvement of acidic compartments in the catabolism of these macromolecules. This was corroborated by the autoradiographic studies which showed the close association of 35S-labeled products with secondary lysosomes. However, the initial degradation of the proteoglycan might have occurred in a prelysosomal compartment since Step 1 was not totally blocked by chloroquine. The combined results indicate that the intracellular degradation of heparan sulfate follows structural as well as functional compartmentalization and provide a model that may be shared by other cell systems.  相似文献   

5.
The medium and cell surface heparan sulfates isolated from SV40-transformed Swiss mouse 3T3 cells were examined in the presence and absence of 1.0 mM p-nitrophenyl-beta-D-xyloside. Incubation of the SV3T3 cells with this beta-xyloside resulted in: (a) a 4- to 5-fold reduction in the molecular weight distribution of medium heparan sulfate, (b) a 10-fold increase in the total synthesis of medium heparan sulfate, and (c) a small reduction in cell growth. There was little, if any, change in either the total level of synthesis or the molecular weight distribution of cell surface heparan sulfate. The covalent association of the beta-xyloside to the medium heparan sulfate was demonstrated by an analysis of the medium heparan sulfate produced by cells grown in the presence of [35S]sulfate and the fluorogenic beta-xyloside, 4-methylumbelliferyl-beta-D-xyloside. Treatment of the purified radiolabeled and fluorogenic heparan sulfate with either nitrous acid or heparitinase resulted in a decrease in the molecular weight of both radiolabeled and fluorogenic material. The data presented in this paper are discussed with respect to both the structure of heparan sulfate and the putative role of heparan sulfate in cell social behavior.  相似文献   

6.
A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation.  相似文献   

7.
Glycoconjugates have been analyzed from a family of closely related mouse cells: a parent clone and three daughter subclones, two of which expressed the simian virus 40 (SV40) T-antigen. The experimental procedure involved the simultaneous comparison by DEAE-cellulose chromatography of papain-digested macromolecules from the parent, labeled with [3H]glucosamine, and one of the daughter subclones, labeled with [14C]-glucosamine. Three cultures compartments (the medium, the cell surface trypsinate, and the cells) from the paired cell lines were combined at the earliest time during the harvesting of the cells. Heparan sulfate on the surface of cells and secreted into the medium from T-antigen-positive subclones was eluted at lower salt concentrations from the anion exchange column than that from the parent clone. In the viable trypsinized cells a marked reduction of heparan sulfate was detected in the T-antigen-positive subclones. These changes were highly reproducible, were observed during both logarithmic and stationary phase of growth, and neither change was observed in the T-antigen-negative sister subclone. The elution point of heparan sulfate from Sepharose 6B was unaltered. Ratios of 35S to 3H for heparan sulfate obtained from cells doubly labeled with [35S]sulfate and [3H]glucosamine were lower in the T-antigen-positive subclones. Similar changes for the 35S to 3H ratio of chondroitin sulfate were associated with only small alterations in elution from anion exchange columns. Kinetic experiments suggested a reduced rate of incorporation of [35S]sulfate with no change in turnover rate. A substantial portion of the labeled heparan sulfate was associated with the cell surface; in contrast most of the hyaluronic acid and a large proportion of the chondroitin sulfate was apparently secreted. Quantitative changes in hyaluronic acid labeling did not correlate with expression of T-antigen. Glycosaminoglycans left on the dish after detaching cells with ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid were nearly completely released by subsequent trypsinization. Cell detachment by trypsinization left an insignificant amount of labeled glycosaminoglycan on the dish surface. The alterations in heparan sulfate metabolism correlated with the expression of T-antigen and with the cells' ability to grow to high densities in monolayer culture, but not with growth in suspension in viscous medium. Tumorigenicity of the subclones was essentially the same as that of the parent clone.  相似文献   

8.
It has been shown that extracellular glycosaminoglycans (GAGs) limit the gene transfer by cationic lipids and polymers. The purpose of this study was to clarify how interactions with anionic GAGs (hyaluronic acid and heparan sulfate) modify the cellular uptake and distribution of lipoplexes and polyplexes. Experiments on cellular DNA uptake and GFP reporter gene expression showed that decreased gene expression can rarely be explained by lower cellular uptake. In most cases, the cellular uptake is not changed by GAG binding to the lipoplexes or polyplexes. Reporter gene expression is decreased or blocked by heparan sulfate, but it is increased by hyaluronic acid; this suggests that intracellular factors are involved. Confocal microscopy experiments demonstrated that extracellular heparan sulfate and hyaluronic acid are taken into cells both with free and DNA-associated carriers. We conclude that extracellular GAGs may alter both the cellular uptake and the intracellular behavior of the DNA complexes.  相似文献   

9.
10.
The plasma membrane defines the border of living cells and provides a barrier to extracellular components. Advances in molecular biology have resulted in the development of novel therapeutic strategies (e.g. gene therapy and cellular protein delivery) which rely on the entry of charged macromolecules into the intracellular compartment. Recent reports demonstrate an intriguing role for heparan sulfate proteoglycans in cellular internalization of viruses, basic peptides and polycation-nucleic-acid complexes and the possibility that they have important implications for gene transfer and protein delivery to mammalian cells. This review focuses on heparan sulfate proteoglycan as a plasma membrane carrier.  相似文献   

11.
Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo.  相似文献   

12.
Difficulties in specific detection of transfected DNA in cells represent an important limitation in the study of the gene transfer process. We studied the cellular entry and fate of a plasmid DNA complexed with a cationic lipid, Vectamidine (3-tetradecylamino-N-tert-butyl-N'-tetradecylpropionamidine) in BHK21 cells. To facilitate its detection inside the cells, bromodeoxyuridine (BrdU) was incorporated into plasmid DNA under conditions that minimize plasmid alteration. BrdU was localized in cells incubated with Vectamidine/BrdU-labeled plasmid DNA complexes by immunogold labeling and electron microscopy (EM). Labeling was predominantly associated with aggregated liposome structures at the surface of and inside the cells. EM observations of cells transfected with Vectamidine/DNA complexes showed that the liposome/DNA aggregates accumulate in large vesicles in the cell cytosol. On the other hand, using rhodamine-labeled Vectamidine and revealing BrdU with FITC-conjugated antibodies permitted simultaneous detection in the cells of both components of the complexes with confocal laser scanning microscopy. The DNA and lipids co-localized at the surface of and inside the cells, indicating that the complex is internalized as a whole. Our results show that the BrdU-labeled plasmid DNA detection system can be a useful tool to visualize exogenous DNA entry into cells by a combination of electron and confocal microscopy.  相似文献   

13.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteoglycan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of approx. 7.2 . 10(5) in contrast to only 2.4 . 10(5) after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 . 10(3)) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. )1975) Biochem. Biophys. Res. Commun. 63, 448--454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures of 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented data are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

14.
Human colon carcinoma cells synthesize a high-molecular-weight heparan sulfate proteoglycan which is localized at the cell surface. In this study we have performed a series of immunoprecipitation and pulse-chase experiments associated with various pharmacological agents that interfere with the synthesis and post-translational modification of the proteoglycan. We demonstrate that colon carcinoma cells synthesize the heparan sulfate proteoglycan from a 400-kDa precursor protein that is immunologically related to the Engelbreth-Holm-Swarm (EHS) tumor cell proteoglycan. The cells contain a large pool of precursor protein with a half-life of about 75 min. Most of the precursor protein receives heparan sulfate side chains and is then transported to the cell surface and released into the medium. A portion of the precursor pool, however, does not receive heparan sulfate chains but is secreted into the medium. The glycosylation and subsequent secretion of the 400-kDa precursor protein was inhibited by NH4Cl and even more by monensin, indicating that the transit of precursor from the rough endoplasmic reticulum to the cell surface occurred through the Golgi complex and acidic compartments. The existence of a sizable pool of precursor protein was confirmed by additional experiments using cycloheximide and xyloside. These experiments showed that the half-life of the precursor protein was also 75 min and that stimulation of heparan sulfate synthesis by xyloside was greatly enhanced (about 12-fold) after new protein core synthesis was blocked by cycloheximide. Although the structural models proposed for the EHS and colon carcinoma heparan sulfate proteoglycans differ, the observation that they are derived from a precursor protein with dimensional and immunological similarities suggests that they may be genetically related.  相似文献   

15.
Recent evidence supports a role for proteoglycans in polycation-mediated gene delivery. Therefore, the interaction of glycosaminoglycans with cationic lipid-DNA complexes (CLDCs) has been characterized using a combination of biophysical approaches. At low ionic strength, CLDCs bind to heparin-derivatized Sepharose particles, with the ratio of cationic lipid to DNA controlling the binding. Incorporation of the helper lipids cholesterol or 1,2-dioleoyl-phosphatidylethanolamine increases the amount of bound CLDC. Heparin also induces the aggregation of CLDCs, with cholesterol reducing this effect. Isothermal titration calorimetry demonstrates an endothermic heat for the binding of heparin to CLDCs at low ionic strength, whereas circular dichroism studies suggest a heparin-stimulated release of DNA from CLDCs at a greater than 20-fold charge excess. Increasing the ionic strength to 0.11 reduces CLDC binding to heparin beads, and greatly enhances the release of DNA from CLDCs by heparin. The ability of the cell surface glycosaminoglycan heparan sulfate to release DNA from CLDCs is more sensitive than heparin to the incorporation of the cholesterol or 1,2-dioleoyl-phosphatidylethanolamine. Titration calorimetry reveals an exothermic heat for the interaction glycosaminoglycans with CLDCs at higher ionic strength. These results are consistent with the direct involvement of proteoglycans in transfection.  相似文献   

16.
A member of the vascular endothelial growth factor (VEGF) family, VEGF165, regulates vascular endothelial cell functions in autocrine and paracrine fashions in microvessels. Proteoglycans are highly glycosylated poly-anionic macromolecules that influence cellular behaviors such as proliferation and migration by interacting with cytokines/growth factors. In the present study, we investigated the regulation of proteoglycan synthesis by VEGF165 in cultured human brain microvascular endothelial cells. The cells were exposed to recombinant human VEGF165, and the proteoglycans were then characterized using biochemical techniques. VEGF165 treatment increased the accumulation of proteoglycans 1.4- and 1.6-fold in the cell layer and conditioned medium, respectively. This effect resulted from the activation of VEGFR-2, and was mimicked by vammin, a VEGFR-2 ligand from snake venom but not placenta growth factor, which binds specifically to VEGFR-1. VEGF165 stimulated the production and secretion of perlecan, substituted with shorter heparan sulfate side chains, but with unaltered sulfated disaccharide composition. The perlecan secreted by VEGF165-stimulated endothelial cells may be involved in the regulation of cellular behavior during angiogenesis, in diseases of the brain microvessels, and in the maintenance of the endothelial cell monolayer.  相似文献   

17.
Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteogylcan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of appox. 7.2 · 105 in contrast to only 2.4 · 105 after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 · 103) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. (1975) Biochem. Biophys. Res. Commun. 63, 448–454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures ot 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented date are discussed with respect to the postulated role of heparan sulfate in cell social behavior.  相似文献   

18.
Newly synthesized porcine tubular epithelial cell proteoglycans were labeled in vitro with Na2[35S]SO4. At the beginning of the labeling period (24 h) [35S] sulfate incorporated into macromolecules was measured following PD-10 chromatography. There was a significant reduction in the amount of 35S-labeled macromolecules isolated from polycystic cells compared to that from normal cells. The distribution of recovered radiolabeled material among the medium, cell surface, and intracellular fractions was similar for both normal and polycystic cells. Analysis of the proteoglycans in polycystic cells demonstrated that 86 and 73% of 35S-labeled macromolecules were of the heparan sulfate type in polycystic and normal cells, respectively. The remainder was chondroitin sulfate. Proteoglycans were characterized using DEAE-Sephacel ion-exchange chromatography, chondroitinase ABC, heparitinase, and nitrous acid digestion followed by Sepharose CL-4B gel permeation chromatography. The majority of radiolabeled material in the medium, cell surface, and intracellular fractions eluted between 0.35 and 0.39 M NaCl. However, a second peak (peak II) that eluted at 0.25 M NaCl was found in the medium from polycystic cells. This peak accounted for 27% of the total macromolecules secreted into the medium. Proteoglycans in the major peak were susceptible to nitrous acid and chondroitinase ABC digestion. A similar proportion of peak II was degraded by chondroitinase ABC. However, the remainder was only slightly susceptible to treatment with nitrous acid or heparitase. In normal cells a small amount of material eluted at a similar low charge; the proteoglycans were the same as those found in the major peak and appeared as a shoulder on this peak.  相似文献   

19.
20.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号