首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the X-ray structure analysis of an EcoRI-oligodeoxynucleotide complex [McClarin et al. (1986) Science 234, 1526], sequence specificity is mediated by 12 hydrogen bonds, 6 from each of the two identical subunits of the dimeric enzyme to the recognition site -GAATTC-: Arg200 forms two hydrogen bonds with guanine, while Glu144 and Arg145 form four hydrogen bonds to adjacent adenine residues. Changing the hydrogen-bonding potential at the recognition site without perturbing the rest of the interface should lead to the recognition of degenerate sequences [Rosenberg et al. (1987) in Protein Engineering (Oxender, D. L., & Fox, C. F., Eds.) pp 237-250, Liss, New York]. We have shown previously that replacing Glu144 by Gln and Arg145 by Lys affects the activity of the enzyme, not, however, its specificity [Wolfes et al. (1986) Nucleic Acids Res. 14, 9063]. We show now that also the mutation of Arg200 to Lys, the double mutation Glu144Arg145 to GlnLys, and the triple mutation Glu144Arg145Arg200 to GlnLysLys do not lead to a detectable degeneracy of the specificity of cleavage by EcoRI but significantly impair the catalytic activity of this enzyme. A detailed analysis of the steady-state kinetics of cleavage of pUC8 DNA and a tridecadeoxynucleotide substrate demonstrates that the reduction in activity for all DNA binding site mutants investigated so far is mainly due to a decrease in kcat, with the exception of the Arg200 to Lys mutant, which is only impaired in its KM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have constructed a plasmid (pRIF 309+) carrying the EcoRI restriction endonuclease gene and the f1 origin of replication. Upon transformation of this plasmid into E. coli and infection with bacteriophage f1 single stranded plasmids are produced which can be used for sequencing and site directed mutagenesis. Using this single stranded DNA and synthetic oligodeoxynucleotides we have introduced point mutations at defined positions of the EcoRI gene. Since in pRIF309+ the EcoRI gene is under the control of the pL-promoter, high level expression of the mutated EcoRI gene could be obtained upon induction. Mutant EcoRI enzymes were purified to homogeneity and characterized in structural and functional terms. Our results demonstrate that the Glu 111----Gln, Glu 144----Gln and Arg 145----Lys -mutants adopt a very similar conformation as the wild type enzyme, but have by two orders of magnitude smaller specific activities than the wild type enzyme, mainly due to a reduction of the Vmax-value.  相似文献   

3.
Clustering of null mutations in the EcoRI endonuclease   总被引:4,自引:0,他引:4  
EcoRI endonuclease mutants were isolated in a methylase-deficient background following in vitro hydroxylamine mutagenesis of plasmid pKG2 (Kuhn et al.: Gene 44:253-263, 1986). Mutants which survived high-level endonuclease expression (IPTG induction) were termed null mutants. Sixty-two of 121 null mutants tested by Western blot contained normal levels of endonuclease cross-reacting protein. The complete endonuclease gene was sequenced for 27 null mutants. This group was found to consist of 20 single base-change missense mutations, 6 double mutations, and 1 triple mutation. Ten of the 20 single mutations were clustered between residues 139 and 144. When examined with respect to the structure of the EcoRI-DNA complex (McClarin et al.: Science 234:1526-1541, 1986), these alterations were found to fall predominantly into two classes: substitutions at the protein-DNA interface or substitutions at the protein-protein (dimer) interface. Protein from several of the mutants was purified and sized by using HPLC. Wild-type EcoRI endonuclease and protein from three of the DNA interface mutations (Ala139----Thr, Gly140----Ser, Arg203----Gln) appeared to be dimeric, while protein from subunit interface mutations (Glu144----Lys, Glu152----Lys, Gly210----Arg) migrated as monomers.  相似文献   

4.
Ribonuclease T1 (RNase T1) and mutants Gln25----Lys, Glu58----Ala, and the double mutant were prepared from a chemically synthesized gene, cloned and expressed in Escherichia coli. The wild-type RNase T1 prepared from the cloned gene was identical in every functional and physical property examined to RNase T1 prepared from Aspergillus oryzae. Urea and thermal unfolding experiments show that Gln25----Lys is 0.9 kcal/mol more stable and Glu58----Ala is 0.8 kcal/mol less stable than wild-type RNase T1. In the double mutant, these contributions cancel and the stability does not differ significantly from that of wild-type RNase T1. For the double mutant, the dependence of delta G on urea concentration is significantly greater than for wild-type RNase T1 or the single mutants. This suggests that the double mutant unfolds more completely in urea than the other proteins. The activity of Gln25----Lys is identical with that of wild-type RNase T1. The activities of Glu58----Ala and the double mutant are 7% of wild-type when GpC hydrolysis is measured (due to a 35-fold decrease in kcat), and 37% of wild-type when RNA hydrolysis is measured. Thus, Glu58 is important, but not essential to the activity of RNase T1.  相似文献   

5.
Several recently discovered members of the carboxypeptidase E (CPE) gene family lack critical active site residues that are conserved in other family members. For example, three CPE-like proteins contain a Tyr in place of Glu300 (equivalent to Glu270 of carboxypeptidase A and B). To investigate the importance of this position, Glu300 of rat CPE was converted into Gln, Lys, or Tyr, and the proteins expressed in Sf9 cells using the baculovirus system. All three mutants were secreted from the cells, but the media showed no enzyme activity above background levels. Wild-type CPE and the Gln300 point mutant bound to a p-aminobenzoyl-Arg-Sepharose affinity resin, and this binding was competed by an active site-directed inhibitor, guanidinoethylmercaptosuccinic acid. The affinity purified mutant CPE protein showed no detectable enzyme activity (<0.004% of wild-type CPE) toward dansyl-Phe-Ala-Arg. Expression of the Gln300 and Lys300 mutant CPE proteins in the NIT3 mouse pancreatic beta-cell line showed that these mutants are routed into secretory vesicles and secreted via the regulated pathway. Taken together, these results indicate that Glu300 of CPE is essential for enzyme activity, but not required for substrate binding or for routing into the regulated secretory pathway.  相似文献   

6.
Cytochrome P450scc and adrenodoxin are redox proteins of the electron transfer chain of the inner mitochondrial membrane steroid hydroxylases. In the present work site-directed mutagenesis of the charged residues of cytochrome P450scc and adrenodoxin, which might be involved in interaction, was used to study the nature of electrostatic contacts between the hemeprotein and the ferredoxin. The target residues for mutagenesis were selected based on the theoretical model of cytochrome P450scc-adrenodoxin complex and previously reported chemical modification studies of cytochrome P450scc. In the present work, to clarify the molecular mechanism of hemeprotein interaction with ferredoxin, we constructed cytochrome P450scc Lys267, Lys270, and Arg411 mutants and Glu47 mutant of adrenodoxin and analyzed their possible role in electrostatic interaction and the role of these residues in the functional activity of the proteins. Charge neutralization at positions Lys267 or Lys270 of cytochrome P450scc causes no significant effect on the physicochemical and functional properties of cytochrome P450scc. However, cytochrome P450scc mutant Arg411Gln was found to exhibit decreased binding affinity to adrenodoxin and lower activity in the cholesterol side chain cleavage reaction. Studies of the functional properties of Glu47Gln and Glu47Arg adrenodoxin mutants indicate that a negatively charged residue in the loop covering the Fe2S2 cluster, being important for maintenance of the correct architecture of these structural elements of ferredoxin, is not directly involved in electrostatic interaction with cytochrome P450scc. Moreover, our results indicate the presence of at least two different binding (contact) sites on the proximal surface of cytochrome P450scc with different electrostatic input to interaction with adrenodoxin. In the binary complex, the positively charged sites of the proximal surface of cytochrome P450scc well correspond to the two negatively charged sites of adrenodoxin: the "interaction" domain site and the "core" domain site.  相似文献   

7.
Su P  Scheiner-Bobis G 《Biochemistry》2004,43(16):4731-4740
P-type ATPases such as the sodium pump appear to be members of a superfamily of hydrolases structurally typified by the L-2-haloacid dehalogenases. In the dehalogenase L-DEX-ps, Lys151 serves to stabilize the excess negative charge in the substrate/reaction intermediates and Asp180 coordinates a water molecule that is directly involved in ester intermediate hydrolysis. To investigate the importance of the corresponding Lys691 and Asp714 of the sodium pump alpha subunit, sodium pump mutants were expressed in yeast and analyzed for their properties. Lys691Ala, Lys691Asp, Asp714Ala, and Asp714Arg mutants were inactive, not only with respect to ATPase activity but also to interaction with the highly sodium pump-specific inhibitors ouabain or palytoxin (PTX). In contrast, conservative mutants Lys691Arg and Asp714Glu retained some of the partial activities of the wild-type enzyme, although they completely failed to display any ATPase activity. Yeast cells expressing Lys691Arg and Asp714Glu mutants are sensitive to the sodium pump-specific inhibitor PTX and lose intracellular K+. Their sensitivity to PTX, with EC50 values of 118 +/- 24 and 76.5 +/- 3.6 nM, respectively, was clearly reduced by almost 7- or 4-fold below that of the native sodium pump (17.8 +/- 2.7 nM). Ouabain was recognized under these conditions with low affinity by the mutants and inhibited the PTX-induced K+ efflux from the yeast cells. The EC50 for the ouabain effect was 183 +/- 20 microM for Lys691Arg and 2.3 +/- 0.08 mM for the Asp714Glu mutant. The corresponding value obtained with cells expressing the native sodium pump was 69 +/- 18 microM. In the presence of Pi and Mg2+, none of the mutant sodium pumps were able to bind ouabain. When Mg2+ was omitted, however, both Lys691Asp and Asp714Glu mutants displayed ouabain binding that was reduced by Mg2+ with an EC50 of 0.76 +/- 0.11 and 2.3 +/- 0.2 mM, respectively. In the absence of Mg2+, ouabain binding was also reduced by K+. The EC50 values were 1.33 +/- 0.23 mM for the wild-type enzyme, 0.93 +/- 0.2 mM for the Lys691Arg mutant, and 1.02 +/- 0.24 mM for the Asp714Glu enzyme. None of the neutral or nonconservative mutants displayed any ouabain-sensitive ATPase activity. Ouabain-sensitive phosphatase activity, however, was present in membranes containing either the wild-type (1105 +/- 100 micromol of p-nitrophenol phosphate hydrolyzed min(-1) mg of protein(-1)) or the Asp714Glu mutant (575 +/- 75 micromol min(-1) mg(-1)) sodium pump. Some phosphatase activity was also associated with the Lys691Arg mutant (195 +/- 63 micromol min(-1) mg(-1)). The results are consistent with Lys691 and Asp714 being essential for the phosphorylation/dephosphorylation process that allows the sodium pump to accomplish the catalytic cycle.  相似文献   

8.
Abstract

The restriction endonuclease EcoRI could be modified via site directed mutagenesis at position Arg200. Using the thiophosphate system we introduced either Lys, Glu or Gly in a one pot procedure. Although G recognition should be affected, Lys200 showed wildtype specificity.  相似文献   

9.
We have developed an assay that allows analysis of the activity of EcoRI restriction endonuclease (ENase) and its mutants in vivo. This assay is based on the fact that wild type (wt) EcoRI ENase is toxic for Escherichia coli cells not expressing the EcoRI methyltransferase (MTase). The viability factor defined by the ratio of the viable counts of E. coli cultures having or not having expressed the ecoRIR gene for a defined time is 10(-6) for wt EcoRI ENase and close to one for a totally inactive EcoRI ENase mutant. While the EcoRI MTase (M.EcoRI) provides substantial protection against the toxic effects of the wt EcoRI ENase and several of the mutants, some mutants become more toxic in the presence of M.EcoRI. Twenty-four different DNA-binding-site mutants of EcoRI ENase were characterized in their activity in vivo with this assay. The results obtained allow us to conclude that the structural integrity of the region at and around aa 200 seems to be very critical for the enzymatic function of EcoRI ENase: nonconservative replacements there lead to viability factors of 1-10(-2). While our results indicate that the region around aa 144 and 145 is also involved in the EcoRI ENase-catalyzed reaction, it is also evident that the effects of mutation there are not as large: viability factors of approx. 10(-3) are obtained even for drastic replacements. These results are discussed in the light of the x-ray structure analysis of an EcoRI ENase-DNA recognition complex.  相似文献   

10.
Oligonucleotide-directed mutagenesis was used to produce mutants in the hinge region of the regulatory subunit (R) of the Saccharomyces cerevisiae cAMP-dependent protein kinase. The mutant proteins were expressed in Escherichia coli, purified, urea treated to produce cAMP-free regulatory (R), and analyzed in vitro for catalytic (C) subunit inhibitory activity in the presence and absence of cAMP. When assayed in the absence of cAMP, wild type R dimer inhibited C with an IC50 of 40 nM. Replacement of amino acid residue Ser-145 (the autophosphorylation site of yeast R) with Ala or Gly produced mutants which were 2-10-fold better inhibitors of C, while replacement with Glu, Asp, Lys, or Thr produced mutants which were 2-5-fold worse inhibitors of C relative to wild type R. When assayed in the presence of cAMP, all R subunits had a decreased affinity for C subunit, with Ser-145 and Thr-145 undergoing autophosphorylation. These results suggest that the amino acid at position 145 of R contributes to R-C interaction and therefore influences the equilibrium of yeast protein kinase subunits in vitro.  相似文献   

11.
Segall ML  Colman RF 《Biochemistry》2004,43(23):7391-7402
In adenylosuccinate lyase from Bacillus subtilis, Gln(212), Asn(270), and Arg(301) are conserved and located close to the succinyl moiety of docked adenylosuccinate. We constructed mutant enzymes with Gln(212) replaced by Glu and Met, Asn(270) by Asp and Leu, and Arg(301) by Gln or Lys. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. The specific activities of the Q212M and the 270 and 301 mutant enzymes were decreased more than 3000-fold as compared to the wild type. Only Q212E retained sufficient activity for determination of its kinetic parameters: V(max) was decreased approximately 1000-fold, and K(m) was increased 6-fold, as compared to the wild-type enzyme. Adenylosuccinate binding studies of the other mutants revealed greatly weakened affinities that contributed to, but did not account entirely for, the loss of activity. These mutant enzymes did not differ greatly from the wild-type enzyme in secondary structure or subunit association state, as shown by circular dichroism spectroscopy and light-scattering photometry. Incubation of pairs of inactive mutant enzymes led to reconstitution of some functional sites by subunit complementation, with recovery of up to 25% of the specific activity of the wild-type enzyme. Subunit complementation occurs only if the two mutations are contributed to the active site by different subunits. Thus, mixing Q212E with N270L enzyme yielded a specific activity of approximately 20% of the wild-type enzyme, while mixing Q212M with R301K enzyme did not restore activity. As supported by computer modeling, the studies presented here indicate that Gln(212), Asn(270), and Arg(301) are indispensable to catalysis by adenylosuccinate lyase and probably interact noncovalently with the carboxylate anions of the substrates 5-aminoimidazole-4(N-succinylocarboxamide)ribonucleotide and adenylosuccinate, optimizing their bound orientations.  相似文献   

12.
Epothilone A (EpoA) is under investigation as an antitumor agent. To provide better understanding of the activity of EpoA against cancers, by theoretical studies such as using docking method, molecular dynamics simulation and density functional theory calculations, we identify several key residues located on β-tubulin as the active sites to establish an active pocket responsible for interaction with EpoA. Eight residues (Arg276, Asp224, Asp26, His227, Glu27, Glu22, Thr274, and Met363) are identified as the active sites to form the active pocket on β-tubulin. The interaction energy is predicted to be -121.3?kJ/mol between EpoA and β-tubulin. In the mutant of β-tubulin at Thr274Ile, three residues (Arg359, Glu27, and His227) are identified as the active sites for the binding of EpoA. In the mutant of β-tubulin at Arg282Gln, three residues (Arg276, Lys19, and His227) serve as the active sites. The interaction energy is reduced to -77.2?kJ/mol between EpoA and Arg282Gln mutant and to -50.2?kJ/mol between EpoA and Thr274Ile mutant. The strong interaction with β-tubulin is significant to EpoA's activity against cancer cells. When β-tubulin is mutated either at Arg282Gln or at Thr274Ile, the decreased strength of interaction explains the activity reduced for EpoA. Therefore, this work shows that the structural basis of the active pocket plays an important role in regulating the activity for EpoA with a Taxol-like mechanism of action to be promoted as an antitumor agent.  相似文献   

13.
14.
Human soluble epoxide hydrolase (hsEH) has been shown to play a role in regulating blood pressure and inflammation. HsEH consists of an N-terminal phosphatase and a C-terminal epoxide hydrolase domain. In the present study, we examined the effects of polymorphisms in the hsEH gene on phosphatase activity, enzyme stability, and protein quaternary structure. The results showed that mutants Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the Arg103Cys/Arg287Gln (double mutant) have significantly lower phosphatase activity compared to the most frequent allele (MFA) of hsEH. In addition, the Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the double mutant have significantly lower kcat/Km values. The stabilities at 37 degrees C of purified Arg287Gln and Arg103Cys/Arg287Gln mutants were also significantly reduced compared to the MFA. HPLC size-exclusion studies showed that the MFA exists predominantly as a dimer. However, the Arg287Gln and Arg103Cys/Arg287Gln mutants show increased concentration of the monomer. We conclude that the Arg287Gln polymorphism disrupts putative intra- and inter-monomeric salt-bridges responsible for dimerization.  相似文献   

15.
To understand the mechanism of signal propagation involved in the cooperative AMP inhibition of the homotetrameric enzyme pig-kidney fructose-1,6-bisphosphatase, Arg49 and Lys50 residues located at the C1-C2 interface of this enzyme were replaced using site-directed mutagenesis. The mutant enzymes Lys50Ala, Lys50Gln, Arg49Ala and Arg49Gln were expressed in Escherichia coli, purified to homogeneity and the initial rate kinetics were compared with the wild-type recombinant enzyme. The mutants exhibited kcat, Km and I50 values for fructose-2,6-bisphosphate that were similar to those of the wild-type enzyme. The kinetic mechanism of AMP inhibition with respect to Mg2+ was changed from competitive (wild-type) to noncompetitive in the mutant enzymes. The Lys50Ala and Lys50Gln mutants showed a biphasic behavior towards AMP, with total loss of cooperativity. In addition, in these mutants the mechanism of AMP inhibition with respect to fructose-1,6-bisphosphate changed from noncompetitive (wild-type) to uncompetitive. In contrast, AMP inhibition was strongly altered in Arg49Ala and Arg49Gln enzymes; the mutants had > 1000-fold lower AMP affinity relative to the wild-type enzyme and exhibited no AMP cooperativity. These studies strongly indicate that the C1-C2 interface is critical for propagation of the cooperative signal between the AMP sites on the different subunits and also in the mechanism of allosteric inhibition of the enzyme by AMP.  相似文献   

16.
Guan L  Nakae T 《Journal of bacteriology》2001,183(5):1734-1739
The MexABM efflux pump exports structurally diverse xenobiotics, utilizing the proton electrochemical gradient to confer drug resistance on Pseudomonas aeruginosa. The MexB subunit traverses the inner membrane 12 times and has two, two, and one charged residues in putative transmembrane segments 2 (TMS-2), TMS-4, and TMS-10, respectively. All five residues were mutated, and MexB function was evaluated by determining the MICs of antibiotics and fluorescent dye efflux. Replacement of Lys342 with Ala, Arg, or Glu and Glu346 with Ala, Gln, or Asp in TMS-2 did not have a discernible effect. Ala, Asn, or Lys substitution for Asp407 in TMS-4, which is well conserved, led to loss of activity. Moreover, a mutant with Glu in place of Asp407 exhibited only marginal function, suggesting that the length of the side chain at this position is important. The only replacements for Asp408 in TMS-4 or Lys939 in TMS-10 that exhibited significant function were Glu and Arg, respectively, suggesting that the native charge at these positions is required. In addition, double neutral mutants or mutants in which the charged residues Asp407 and Lys939 or Asp408 and Lys939 were interchanged completely lost function. An Asp408-->Glu/Lys939-->Arg mutant retained significant activity, while an Asp407-->Glu/Lys939-->Arg mutant exhibited only marginal function. An Asp407-->Glu/Asp408-->Glu double mutant also lost activity, but significant function was restored by replacing Lys939 with Arg (Asp407-->Glu/Asp408-->Glu/Lys939-->Arg). Taken as a whole, the findings indicate that Asp407, Asp408, and Lys939 are functionally important and raise the possibility that Asp407, Asp408, and Lys939 may form a charge network between TMS-4 and TMS-10 that is important for proton translocation and/or energy coupling.  相似文献   

17.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

18.
Site-directed mutagenesis of the ecoRII gene has been used to search for the active site of the EcoRII restriction endonuclease. Plasmids with point mutations in ecoRII gene resulting in substitutions of amino acid residues in the Asp110-Glu112 region of the EcoRII endonuclease (Asp110 --> Lys, Asn, Thr, Val, or Ile; Pro111 --> Arg, His, Ala, or Leu; Glu112 --> Lys, Gln, or Asp) have been constructed. When expressed in E. coli, all these plasmids displayed EcoRII endonuclease activity. We also constructed a plasmid containing a mutant ecoRII gene with deletion of the sequence coding the Gln109-Pro111 region of the protein. This mutant protein had no EcoRII endonuclease activity. The data suggest that Asp110, Pro111, and Glu112 residues do not participate in the formation of the EcoRII active site. However, this region seems to be relevant for the formation of the tertiary structure of the EcoRII endonuclease.  相似文献   

19.
Chymotrypsin-like serine proteases are found in high abundance in mast cell granules. By site-directed mutatgenesis, we have previously shown that basic amino acids in positions 143 and 192 (Arg and Lys respectively) of the human mast cell chymase are responsible for an acidic amino acid residue preference in the P2'' position of substrates. In order to study the influence of these two residues in determining the specificity of chymase inhibitors, we have synthesized five different potent inhibitors of the human chymase. The inhibitory effects of these compounds were tested against the wild-type enzyme, against two single mutants Arg143Gln and Lys192Met and against a double mutant, Arg143Gln+Lys192Met. We observed a markedly reduced activity of all five inhibitors with the double mutant, indicating that these two basic residues are involved in conferring the specificity of these inhibitors. The single mutants showed an intermediate phenotype, with the strongest effect on the inhibitor by the mutation in Lys192. The Lys192 and the double mutations also affected the rate of cleavage of angiotensin I but did not seem to affect the specificity in the cleavage of the Tyr4-Ile5 bond. A more detailed knowledge about which amino acids that confer the specificity of an enzyme can prove to be of major importance for development of highly specific inhibitors for the human chymase and other medically important enzymes.  相似文献   

20.
The budding yeast Saccharomyces cerevisiae contains a single actin gene and the gene product, actin, is essential for growth. Two mutants of yeast actin that do not support yeast growth were prepared from yeast by coexpressing the mutant and a 6-histidine-tagged wild-type actin followed by separation of the wild-type and mutant actin using Ni-NTA chromatography as described elsewhere [Buzan, J., Du, J., Karpova, T., and Frieden, C. (1999) Proc. Natl. Acad. Sci. USA 96, 2823-2827]. The mutations, in muscle actin numbering, were at positions 334 (Glu334Lys) and 168 (Gly168Arg) and were chosen based on phenotypic changes observed in the behavior of actin mutants of Caenorhabditis elegans. Glu334 is located on the surface of actin between subdomains 1 and 3 while Gly168 is located in a region near actin-actin contacts in the actin filament. The Glu334Lys mutant polymerized slightly faster than wild-type yeast actin, suggesting that loss of interactions with some actin binding protein, rather than loss of actin-actin contacts, was responsible for its inability to support yeast growth. The Gly168Arg mutant polymerized at a rate similar to wild-type but the extent was considerably less, kinetic characteristics suggesting a high critical concentration (ca. 4 microM) without a large change in the ability to form nuclei for the nucleation-elongation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号