首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery that some well-known growth factors have inducing activity in embryogenesis has accelerated our understanding of embryonic induction. Relevant receptors, signal transduction pathways and patterns of gene expression have been characterized over the past decade. Amphibian embryos have provided an excellent model for analysis of embryonic induction because they are easily surgically manipulated and cultured in vitro, and with the addition of treatment with various inducing factors we have been able to control organogenesis and body patterning during early development in vitro. Activin A, a TGF-beta family protein, has a potent mesoderm-inducing activity on the isolated ectoderm called the animal cap. Activin induces animal caps to differentiate into various mesodermal and endodermal tissues, including beating hearts, in a dose-dependent fashion. Activin, in combination with retinoic acid, also induces the formation of the pronephros, a primitive embryonic kidney. The in vitro induced kidney was confirmed to function in vivo in a transplantation experiment. Furthermore, the activin-induced animal caps organize heads or trunk-and-tails in exactly the same manner as the organizer. The potential use of in vitro induction systems to further our understanding of vertebrate organogenesis and body patterning will be discussed.  相似文献   

2.
Activin A can induce the Xenopus presumptive ectoderm (animal cap) to form different types of mesoderm and endoderm at different concentrations and the animal cap treated with activin can function as an organizer during early development. The dissociated Xenopus animal cap cells treated with activin form an aggregate and it develops into various tissues in vitro. In this study, to induce jaw cartilage from undifferentiated cells effectively, we developed a culture method to manipulate body patterning in vitro, using activin A and dissociated animal cap cells. An aggregate consisting only of activin A-treated dissociated cells developed into endodermal tissues. However, when activin A-treated cells were mixed with untreated cells at a ratio of 1:5, the aggregate developed cartilage with the maxillofacial regional marker genes, goosecoid, Xenopus Distal-less 4 and X-Hoxa2. When this aggregate was transplanted into the abdominal region of host embryos, maxillofacial structures containing cartilage and eye developed. We raised these embryos to adulthood and found that tooth germ had developed in the transplanted tissue. Here, we show the induction of jaw cartilage, tooth germ and eye structures from animal caps using activin A in the aggregation culture method. This differentiation system will help to promote a better understanding of the regulating mechanisms of body patterning and tooth induction in vertebrates.  相似文献   

3.
4.
The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct-specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6-positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c-ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.  相似文献   

5.
The peptide growth factor Activin A has been shown to induce complete axial structures in explanted blastula animal caps. However, it is not understood how much this response to activin depends upon early signals that prepattern the ectoderm. We have therefore asked what tissues can be induced in blastula animal caps by activin in the absence of early dorsal signals. Using whole-mount in situ hybridization, we compare the expression of three neural markers, N-CAM, En-2 and Krox-20 in activin-treated ectoderm from control and ventralized embryos. In response to activin, both normal and ventralized animal caps frequently form neural tissue (and express N-CAM) and express the hindbrain marker Krox-20. However, the more anterior marker, En-2, is expressed in only a small fraction of normal animal caps and rarely in ventralized animal caps; the frequency of expression does not increase with higher doses of activin. In all cases En-2 and Krox-20 are expressed in coherent patches or stripes in the induced caps. Although mesoderm is induced in both control and ventralized animal caps, notochord is found in response to activin at moderate frequency in control caps, but rarely in ventralized animal caps. These results support the idea that in the absence of other signals, activin treatment elicits hindbrain but not notochord or anterior neural tissue; and thus, the anterior and dorsal extent of tissues formed in response to activin depends on a prior prepatterning or previous inductions.  相似文献   

6.
Activin is a potent inducer of mesoderm in amphibian embryos. We previously reported that low concentrations of activin could induce the formation of blood cells from Xenopus explants (animal caps). Both hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblasts. In this study, we tried to induce differentiation of vascular endothelial cells in aggregates derived from Xenopus animal caps. Aggregates formed from cells that were co-treated with activin and angiopoietin-2 expressed the vascular endothelial markers, X-msr, Xtie2 and Xegfl7. However, none of these aggregates expressed the hematopoietic marker genes, globin alpha T3, alpha T5, alpha A or GATA-1. We used microarray analysis to compare the gene expression profiles of aggregates treated with activin alone or with activin and angiopoietin. The combination, but not activin alone, induced expression of vascular-related genes such as Xl-fli and VEGF. These results demonstrate that treatment of dissociated animal cap cells with activin and angiopoietin-2 can induce differentiation of endothelial cells, and provides a promising model system for the in vitro study of blood vessel induction in vertebrates.  相似文献   

7.
8.
Formation of three germ layers is the most important event in early vertebrate development. Animal cap assays can be used to reproduce the in vivo induction of amphibian tissues in order to investigate the differentiation processes that occur in normal embryonic development. Activin treatment strongly and dose-dependently induces various types of mesodermal and endodermal tissue in cultured animal caps. Beating heart, pronephros, pancreas and cartilage can be induced by microsurgical manipulation and simultaneous treatment with activin and other factors. These in vitro induction systems will be helpful for elucidating the mechanisms of tissue induction and organ formation in vertebrate development.  相似文献   

9.
The first step in kidney development is the formation of the pronephros which is derived from mesoderm. Xenopus is an appropriate model to study this process since the pronephros can be efficiently induced in animal cap explants by treatment with activin and retinoic acid (RA). Using this in vitro system, we isolated a Xenopus homologue of SMP-30 (Senescence marker protein-30), which is a Ca(2+)-binding protein that is highly conserved in vertebrates. This gene, termed XSMP-30, was found to be selectively expressed in pronephric tubules from the late tadpole stage, by whole mount in situ hybridization. Furthermore XSMP-30 was expressed in animal caps treated with both activin and RA, a condition in which the pronephros is formed in vitro. These data indicate that XSMP-30 is a specific marker for the pronephros.  相似文献   

10.
TGF-beta family signalling pathways are important for germ layer formation and gastrulation in vertebrate embryos and have been studied extensively using embryos of Xenopus laevis. Activin causes changes in cell movements and cell adhesion in Xenopus animal caps and dispersed animal cap cells. Rho family GTPases, including rac, mediate growth factor-induced changes in the actin cytoskeleton, and consequently, in cell adhesion and motility, in a number of different cell types. Ectopic expression of mutant rac isoforms in Xenopus embryos was combined with animal cap adhesion assays and a biochemical assay for rac activity to investigate the role of rac in activin-induced changes in cell adhesion. The results indicate that (1) the perturbation of rac signalling disrupts embryonic cell-cell adhesion, (2) that rac activity is required for activin-induced changes in cell adhesive behavior on fibronectin, and (3) that activin increases endogenous rac activity in animal cap explants.  相似文献   

11.
Activin A has been shown to induce hemoglobin production in various hematopoietic cells. Such activities of three structurally distinct activins (activin A, activin AB, and activin B) were compared using F5-5 mouse erythroleukemia cells. Activin A and AB had similarly potent inducing activities whereas that of activin B was much lower. The erythroid inducing activity of activins was suppressed by follistatin, an activin-binding protein but not by inhibin A and inhibin B. Retinoic acids (both all-trans and 13-cis) had weak erythroid differentiation activity. In addition, clear synergistic erythroid induction occurred when retinoic acid and activin A were mixed together. These results indicate that retinoic acid may modulate activin-induced erythropoiesis in vivo.  相似文献   

12.
The pronephros is the first kidney to develop and is the functional embryonic kidney in lower vertebrates. It has previously been shown that pronephric tubules can be induced to form ex vivo in ectodermal tissue by treatment with activin A and retinoic acid. In this study, we investigated the role of Ca(2+) signaling in the formation of the pronephric tubules both in intact Xenopus embryos and ex vivo. In the ex vivo system, retinoic acid but not activin A stimulated the generation of Ca(2+) transients during tubule formation. Furthermore, tubule differentiation could be induced by agents that increase the concentration of intracellular Ca(2+) in activin A-treated ectoderm. In addition, tubule formation was inhibited by loading the ectodermal tissue with the Ca(2+) chelator, BAPTA-AM prior to activin A/retinoic acid treatment. In intact embryos, Ca(2+) transients were also recorded during tubule formation, and photo-activation of the caged Ca(2+) chelator, diazo-2, localized to the pronephric domain, produced embryos with a shortened and widened tubule phenotype. In addition, the location of the Ca(2+) transients observed, correlated with the expression pattern of the specific pronephric tubule gene, XSMP-30. These data indicate that Ca(2+) might be a necessary signal in the process of tubulogenesis both ex vivo and in intact embryos.  相似文献   

13.
Regeneration processes in many tissues are modulated by various factors, which are involved in their organogenesis. Activin A, a member of the TGF-β superfamily, inhibits branching tubulogenesis of the kidney in organ culture system as well as in in vitro tubulogenesis model. On the other hand, follistatin, an antagonist activin A, reverses the effect of activin A on kidney development, induces branching tubulogenesis, and also promotes tubular regeneration after ischemia/reperfusion injury by blocking the action of endogenous activin A. The activin-follistatin system is one of the important regulatory systems modulating developmental and regeneration processes of the kidneys.  相似文献   

14.
Activin acts mitogenically on P19 cells as well as being inhibitory of the differentiation of retinoic acid-treated P19 cells and some neuroblastoma cell lines. Here, we show some lines of evidence that follistatin, an activin-binding protein, is also involved in neural differentiation. Counteracting the activity of activin, addition of follistatin suppresses the anchorage-independent growth of P19 cells in soft agar and stimulates neurite outgrowth of a neuroblastoma cell line, IMR-32 cells. While activin does not seem to be expressed significantly, follistatin is demonstrated in the conditioned medium of these cells. Furthermore, the expression of follistatin in P19 cells is subject to dynamic fluctuations in response to retinoic acid treatment. These neural cells may produce follistatin in a cell stage-specific manner in order to interact with exogenously derived activin.  相似文献   

15.
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism.This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

16.
The activin growth factors consist of dimeric proteins made up of activin beta subunits and have been shown to be essential regulators of diverse systems in physiology. Four subunits are known to be expressed in mammalian cells: betaA, betaB, betaC, and betaE. Surprisingly, deletion of activin betaC and betaE subunits in vivo does not affect embryonic development or adult physiology which has led to the activin betaC and betaE subunits being regarded as non-essential and unimportant. The steady accumulation of circumstantial evidence to the contrary has led this lab to reassess the role of the activin betaC subunit. Activin betaC protein is expressed more widely than indicated by mRNA localisation. Experiments overexpressing activin betaC subunit or adding exogenous Activin C in vitro are contradictory but suggest roles for activin betaC in regulating Activin A action in apoptosis and homeostasis. Sequestration of betaA subunits by dimerisation with betaC subunits to form Activin AC represents an intracellular regulator of Activin A bioactivity. Activins play a pivotal role in normal physiology and carcinogenesis, so any molecule, such as the activin betaC subunit, that can affect activin action is potentially significant. Advancing our understanding of the physiological role of the activin betaC subunit requires new tools and reagents. Direct detection of the Activin AC dimer will be essential and will necessitate the purification of heteromeric Activin AC protein. In addition, there is a need for the development of an in vivo model of activin betaC subunit overexpression. With development of these tools, research into activin action in development and physiology can expand to include the less well understood members of the activin family such as activin betaC.  相似文献   

17.
18.
Activin is a member of the transforming growth factor beta (TGF-beta) and possesses various activities in cellular control phenomena. During Xenopus embryonic development, activin is thought to act as a natural mesoderm-inducing factor. We isolated here the Xenopus activin receptor cDNA from Xenopus tadpole cDNA library and examined the expression of the Xenopus activin receptor gene during the course of early embryonic development. The Xenopus activin receptor has an 87% homology at the level of deduced amino acid sequence with the mouse activin receptor, and using the cDNA obtained, three bands of mRNA with different lengths were detected in Xenopus embryos throughout early embryogenesis. We synthesized activin receptor mRNA in vitro and tested the effect of the injection of the mRNA into Xenopus fertilized eggs on subsequent development. When the synthetic mRNA was injected into uncleaved fertilized eggs, embryos with reduced trunk structure were formed. However, when the mRNA was injected into the ventral blastomeres at the 16-cell stage, embryos with a secondary body axis were formed. These results indicate the importance of the function of activin receptor in the regulatory mechanism for body axis formation.  相似文献   

19.
Activin/EDF as an inhibitor of neural differentiation   总被引:4,自引:0,他引:4  
Activin/EDG, a stimulator of the secretion of follicle stimulating hormone (FSH) from pituitary gland and an inducer of erythroid differentiation for Friend leukemia cells, has since been implicated in a variety of biological roles. Here, we show some novel effects of activin on murine embryonal carcinoma cells (EC cells). First, activin acts as a growth factor on undifferentiated P19 cells, a well characterized EC cell line for the study of mammalian development. Second, activin inhibits the retinoic acid (RA) induced differentiation of P19 cells to neurons and glial cells. The inhibitory effect of activin on neural differentiation, which has yet to be proved in other physiological peptides, is confirmed also on the differentiation of various neuroblastoma cell lines. Our results suggest a possible role of activin as a negative regulator of neural differentiation in mammalian development.  相似文献   

20.
The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in retinoic acid synthesis are expressed in the UGS mesenchyme in a sex specific manner and addition of ligand to female tissue is able to induce prostate-like bud formation in the absence of androgens, albeit at reduced potency. Functional studies in mouse organ cultures that faithfully reproduce the initiation of prostate development indicate that one of the roles of retinoic acid signaling in the male is to inhibit the expression of Inhba, which encodes the βA subunit of Activin, in the UGS mesenchyme. Through in vivo genetic analysis and culture studies we show that inhibition of Activin signaling in the female UGS leads to a similar phenotype to that of retinoic acid treatment, namely bud formation in the absence of androgens. Our data also reveals that both androgens and retinoic acid have extra independent roles to that of repressing Activin signaling in the development of the prostate during fetal stages. This study identifies a novel role for retinoic acid as a mesenchymal factor that acts together with androgens to determine the position and initiation of bud development in the male UGS epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号