首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite advancements made in our understanding of ocular biology, therapeutic options for many debilitating retinal diseases remain limited. Stem cell-based therapies are a potential avenue for treatment of retinal disease, and this mini-review will focus on current research in this area. Cellular therapies to replace retinal pigmented epithelium (RPE) and/or photoreceptors to treat age-related macular degeneration (AMD), Stargardt's macular dystrophy, and retinitis pigmentosa are currently being developed. Over the past decade, significant advancements have been made using different types of human stem cells with varying capacities to differentiate into these target retinal cell types. We review and evaluate pluripotent stem cells, both human embryonic stem cells and human induced pluripotent stem cells, as well as protocols for differentiation of ocular cells, and culture and transplant techniques that might be used to deliver cells to patients.  相似文献   

2.
All-trans-retinal and its condensation-products can cause retinal degeneration in a light-dependent manner and contribute to the pathogenesis of human macular diseases such as Stargardt's disease and age-related macular degeneration. Although these toxic retinoid by-products originate from rod and cone photoreceptor cells, the contribution of each cell type to light-induced retinal degeneration is unknown. In this study, the primary objective was to learn whether rods or cones are more susceptible to light-induced, all-trans-retinal-mediated damage. Previously, we reported that mice lacking enzymes that clear all-trans-retinal from the retina, ATP-binding cassette transporter 4 and retinol dehydrogenase 8, manifested light-induced retinal dystrophy. We first examined early-stage age-related macular degeneration patients and found retinal degenerative changes in rod-rich rather than cone-rich regions of the macula. We then evaluated transgenic mice with rod-only and cone-like-only retinas in addition to progenies of such mice inbred with Rdh8(-/-) Abca4(-/-) mice. Of all these strains, Rdh8(-/-) Abca4(-/-) mice with a mixed rod-cone population showed the most severe retinal degeneration under regular cyclic light conditions. Intense light exposure induced acute retinal damage in Rdh8(-/-) Abca4(-/-) and rod-only mice but not cone-like-only mice. These findings suggest that progression of retinal degeneration in Rdh8(-/-) Abca4(-/-) mice is affected by differential vulnerability of rods and cones to light.  相似文献   

3.
The autosomal dominant macular dystrophies are a confusing group of poorly understood diseases. Linkage studies will greatly aid our classification of these disorders and hopefully provide insight into central retinal function and dysfunction such as occurs in age-related macular degeneration. North Carolina macular dystrophy is one such disease that has been amenable to linkage analysis because of the large pedigree size. Seventy-six polymorphic markers have been tested for linkage and exclusion data are presented.  相似文献   

4.
Stargardt disease (STGD) is a juvenile-onset macular dystrophy and can be inherited in an autosomal recessive or in an autosomal dominant manner. Genes involved in dominant STDG have been mapped to human chromosomes 13q (STGD2) and 6q (STGD3). Here, we identify a new kindred with dominant STGD and demonstrate genetic linkage to the STGD3 locus. Because of a more severe macular degeneration phenotype of one of the patients in this family, the gene responsible for the recessive STGD1, ABCR, was analyzed for sequence variants in all family members. One allele of the ABCR gene was shown to carry a stop codon-generating mutation (R152X) in three family members, including the one patient who had inherited also the dominant gene. A grandparent of that patient with the same ABCR mutation developed age-related macular degeneration (AMD), consistent with our earlier observation that some variants in the ABCR gene may increase susceptibility to AMD in the heterozygous state. Based on these results, we propose that there is a common genetic pathway in macular degeneration that includes genes for both recessive and dominant STGD.  相似文献   

5.
Stargardt's disease is an autosomal recessive infantile macular degeneration of unknown origin whose gene has been recently mapped to chromosome 1p21-p13 by linkage analysis in eight multiplex families. Since the cone-specific -subunit of the transducin gene (GNAT2) has been mapped to chromosome 1p13, we tested GNAT2 as the disease-causing gene in our series. Using a novel intragenic polymorphism, we show here that GNAT2 is most probably located centromeric to the genetic interval encompassing the disease gene (D1S424-D1S236, location score = 3.54). In addition, single-strand conformation polymorphism and sequence analyses of the eight exons of the GNAT2 gene was performed in our probands. No evidence of a deleterious base substitution was observed in any affected individual. Taken together, these results support the exclusion of GNAT2 as the causal disease gene of Stargardt's disease.  相似文献   

6.
Vitelliform macular dystrophy (Best disease) is an autosomal dominant macular dystrophy which shares important clinical features with age-related macular degeneration, the most common cause of legal blindness in the elderly. Unfortunately, our understanding and treatment for this common age-related disorder is limited. Discovery of the gene which causes Best disease has the potential to increase our understanding of the pathogenesis of all types of macular degeneration, including the common age-related form. Best disease has recently been mapped to chromosome 11q13. The photoreceptor-specific protein ROM1 has also been recently mapped to this location, and the ROM1 gene is a candidate gene for Best disease. Using highly polymorphic markers, we have narrowed the genetic region which contains the Best disease gene to the 10-cM region between markers D11S871 and PYGM. Marker D11S956 demonstrated no recombinants with Best disease in three large families and resulted in a lod score of 18.2. In addition, a polymorphism within the ROM1 gene also demonstrated no recombinants and resulted in a lod score of 10.0 in these same three families. We used a combination of SSCP analysis, denaturing gradient gel electrophoresis, and DNA sequencing to screen the entire coding region of the ROM1 gene in 11 different unrelated patients affected with Best disease. No nucleotide changes were found in the coding sequence of any affected patient, indicating that mutations within the coding sequence are unlikely to cause Best disease.  相似文献   

7.
The aim of our study was to evaluate corneal cell proliferation and apoptosis in cases of granular, macular and lattice dystrophy, and to provide evidence which may help to clarify whether apoptosis is a pathogenic factor in any of these dystrophies. The study group comprised 39 eyes (from 33 patients) which had undergone penetrating keratoplasty (PK) for stromal dystrophies: these comprised 12 eyes (from 9 patients, 55.5% males) with granular dystrophy, 13 eyes (12 patients, 33.3% males) with macular dystrophy, and 14 eyes (13 patients, 61.5% males) with lattice type I dystrophy. A further 4 corneal buttons from enucleated eyes of 4 patients with choroideal melanoma served as controls. Immunocytochemical analysis of Ki67 (DNAcon Kit, DakoCytomation A/S, Glostrup, Denmark) was used for evaluation of cell proliferation. Apoptosis was detected by use of the TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling) assay method (Apoptag reagent, Q-Biogene, Strasbourg, France). Statistical comparisons were made using the Mann-Whitney test. No Ki67-positive cells were detected in the study-group or control corneas. In control corneas no apoptotic activity was found. In the study group the mean (normalised) apoptotic keratocyte number was 1.1+/-1.7 in granular dystrophy and 0.5+/-1.1 in lattice type I dystrophy (p = 0.36, 0.63 respectively). Compared to the controls, the difference was statistically significant only for macular dystrophy (1.6+/-1.2; p = 0.01). Keratocyte apoptosis seems to be a concomitant or pathogenic factor in macular dystrophy. However, the pathways that are triggered to result in increased apoptotic cell death remain to be clarified.  相似文献   

8.
ObjectiveTo evaluate the effect of uncomplicated phacoemulsification on central macular thickness (CMT) and best corrected visual acuity (BCVA) in both diabetic patients without diabetic retinopathy (DR) and diabetic patients with mild to moderate non-proliferative diabetic retinopathy (NPDR).MethodsPotential prospective observational studies were searched through PubMed and EMBASE. Standardized mean difference (SMD) and 95% confidence interval (CI) for changes in CMT and BCVA were evaluated at postoperative 1, 3 and 6 months. The pooled effect estimates were calculated in the use of a random-effects model.ResultsA total of 10 studies involving 190 eyes of diabetic patients without diabetic retinopathy and 143 eyes of diabetic patients with NPDR were identified. CMT values demonstrated a statistically significant increase after uncomplicated phacoemulsification at 1 month (SMD, -0.814; 95%CI, -1.230 to -0.399), 3 months (SMD, -0.565; 95%CI, -0.927 to -0.202) and 6 months (SMD, -0.458; 95%CI, -0.739 to -0.177) in diabetic patients with NPDR. There was no statistical difference in CMT values at postoperative 1 month (SMD, -1.206; 95%CI, -2.433 to 0.021)and no statistically significant increase in CMT values at postoperative3 months (SMD, -0.535; 95%CI, -1.252 to 0.182) and 6 months (SMD, -1.181; 95%CI, -2.625 to 0.263) in diabetic patients without DR.BCVA was significantly increased at postoperative 1 month (SMD, 1.149; 95%CI, 0.251 to 2.047; and SMD,1.349; 95%CI, 0.264 to 2.434, respectively) and 6 months (SMD, 1.295; 95%CI, 0.494 to 2.096; and SMD, 2.146; 95%CI, 0.172 to 4.120, respectively) in both diabetic patients without DR and diabetic patients with NPDR. Sensitivity analysis showed that the results were relatively stable and reliable.ConclusionUncomplicated phacoemulsification in diabetic patients with mild to moderate NPDR seemed to influence significantly the subclinical thickening of the macular zones at postoperative 1, 3 and 6 months compared with diabetic patients without DR. BCVA was significantly improved in both diabetic patients without DR and diabetic patients with mild to moderate NPDR.  相似文献   

9.
ABC transporters in lipid transport   总被引:9,自引:0,他引:9  
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardt's macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.  相似文献   

10.
Fundus flavimaculatus with macular dystrophy is an autosomal recessive disease responsible for a progressive loss of visual acuity in adulthood, with pigmentary changes of the macula, perimacular flecks, and atrophy of the retinal pigmentary epithelium. Since this condition shares several clinical features with Stargardt disease, which has been mapped to chromosome 1p21-p13, we tested the disease for linkage to chromosome 1p. We report here the mapping of the disease locus to chromosome 1p13-p21, in the genetic interval defined by loci D1S435 and D1S415, in four multiplex families (maximum lod score 4.79 at recombination fraction 0 for probe AFM217zb2 at locus D1S435). Thus, despite differences in the age at onset, clinical course, and severity, fundus flavimaculatus with macular dystrophy and Stargardt disease are probably allelic disorders. This result supports the view that allelic mutations produce a continuum of macular dystrophies, with onset in early childhood to late adulthood.  相似文献   

11.
North Carolina macular dystrophy (NCMD) is an autosomal dominant macular dystrophy causing impaired central vision at an early age, is completely penetrant, and is present in a single large family. With the development of the hypervariable microsatellite (CA repeats) markers in the human genome, it was possible to relatively rapidly screen most of the genome for linkage to the NCMD gene. After utilizing 124 genetic markers, which excluded over 95% of the human genome, three Marshfield microsatellites located at 6q13-q21 were linked to the NCMD locus. Marshfield marker (MFD) 131 gave a lod score of Z(theta) = 4.36 at theta = 0.137; MFD 171 gave a Z(theta) = 8.42 at theta = 0.004; and MFD 97 gave a Z(theta) = 13.10 at theta = 0.017. Other retinal diseases have been reported on 6q stressing the importance of this region and possibly suggesting that these diseases may be allelic or located in part of a large macular gene family. Locating and characterizing the NCMD gene may be an important step in understanding this group of maculopathies as well as age-related macular degeneration (AMD), a common cause of blindness in the elderly.  相似文献   

12.
Sorsby’s fundus dystrophy (SFD) is an autosomal dominant macular dystrophy which is developed usually in the third or fourth decade of life, and is characterized by central visual loss and nyctalopia due to fundus changes of exudative or atrophic macular lesions. Its functional prognosis is usually poor because of disciform macular scars and peripheral chorioretinal atrophies. To date, five different mutations in the tissue inhibitor of the metallo-proteinases-3 (TIMP3) gene have been identified in families of a wide geographic origin, all of which are missense mutations that cause replacement by cysteine of conserved amino acids in the C-terminus of exon 5 of TIMP3. We have studied two Japanese families with SFD, the first report from the Eastern world, and identified a novel 3’ splice site mutation in the TIMP3 gene, namely a single base insertion at the intron 4/exon 5 junction which converts the consensus sequence CAG to CAAG in the splice acceptor site. In addition, our patients displayed a distinctive clinical expression in that they developed macular dystrophies at an approximately 30-year later age of onset and preserved functional vision until later life with essentially uninvolved peripheral retina. The present findings may provide some insight into the genotype–phenotype relationship in SFD. Received: 27 March 1998 / Accepted: 2 May 1998  相似文献   

13.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

14.
Bullous dystrophy, hereditary macular type (McKusick 302000), is an X-linked disorder and was originally described in a single kindred in the Netherlands by Mendes da Costa and Van der Valk in 1908. To determine the location of the bullous dystrophy gene, segregation studies were performed in this family and in a recently described Italian family. Using informative polymorphic markers, the gene could initially be localized on the Xq27-q28 region. No recombinants were noted with loci in Xq27.3-q28. Fine mapping places the bullous dystrophy locus distal to DXS102 (Xq26.3) in the Italian family and distal to DXS998 (Xq27.3) in the Dutch family.  相似文献   

15.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

16.
Inherited macular dystrophies present with varying clinical signs. They possess significant overlap with other inherited retinal dystrophies and with several acquired retinal degenerations. A classification system for diagnostic purposes is crucial. This paper includes a case report of an extremely unusual presentation of a cone–rod dystrophy. Its challenge lies in the difficulty to differentiate it from not only inherited dystrophies of the photoreceptors and retinal pigment epithelium, but also from acquired degenerations of the macula and retina. This paper reviews the differential diagnoses and management considerations of cone–rod dystrophy.  相似文献   

17.
We mapped a new X-linked recessive atrophic macular degeneration locus to Xp21.1-p11.4 and show allelic involvement of the gene RPGR, which normally causes severe peripheral retinal degeneration leading to global blindness. Ten affected males whom we examined had primarily macular atrophy causing progressive loss of visual acuity with minimal peripheral visual impairment. One additional male showed extensive macular degeneration plus peripheral loss of retinal pigment epithelium and choriocapillaries. Full-field electroretinograms (ERGs) showed normal cone and rod responses in some affected males despite advanced macular degeneration, emphasizing the dissociation of atrophic macular degeneration from generalized cone degenerations, including X-linked cone dystrophy (COD1). The RPGR gene nonsense mutation G-->T at open reading frame (ORF)15+1164 cosegregated with the disease and may create a donor splice site. Identification of an RPGR mutation in atrophic maculardegeneration expands the phenotypic range associated with this gene and provides a new tool for the dissection of the relationship between clinically different retinal pathologies.  相似文献   

18.
Inherited retinal dystrophies are Mendelian neurodegenerative conditions classified as pigmentary retinopathies, macular dystrophies and others. Over a 21-year period, from 1990 to 2011, we have screened in Montpellier 107 genes in 609 families and have identified a causal mutation in 68.5% of them. Following a gene candidate approach, we established that RPE65, the isomerohydrolase of the visual cycle, is responsible for severe childhood blindness (Leber congenital amaurosis or early onset retinal dystrophy). In an ongoing study, we screened the genes in a series of 283 families with dominant retinitis pigmentosa and we have estimated that 80% of the families have a mutation in a known gene. A similar study is currently undergoing for autosomal recessive retinitis pigmentosa. Finally, we have identified IMPG1 as a responsible gene for rare cases of macular vitelliform dystrophy with a dominant or recessive inheritance.  相似文献   

19.

Background  

Mutations in human bestrophin 1 are associated with at least three autosomal-dominant macular dystrophies including Best disease, adult onset vitelliform macular dystrophy and autosomal dominant vitreo-retinochoroidopathy. The protein is integral to the membrane and is likely involved in Ca2+-dependent transport of chloride ions across cellular membranes. Bestrophin 1 together with its three homologues forms a phylogenetically highly conserved family of proteins.  相似文献   

20.
The vitelliform macular dystrophy type 2 (VMD2) gene mutated in Best macular dystrophy encodes a 585-amino acid putative transmembrane protein termed bestrophin-1. The vast majority of known disease-associated alterations are of the missense type, which cluster near predicted transmembrane domains (TMDs). To investigate bestrophin-1 membrane topology and to assess consequences of point mutations on membrane integration, we have analyzed the insertion of putative TMDs into the endoplasmic reticulum (ER) membrane. Out of six potential TMDs, our data suggest a topological model of bestrophin-1 with four transmembrane-spanning segments and one large cytoplasmatic loop between putative TMD2 and TMD5. Consequently, a relatively hydrophobic segment containing putative TMD3 (aa 130-149) and TMD4 (aa 179-201) is located within the cytoplasm. Furthermore, we show that three out of 18 disease-associated alterations investigated (I73N, Y85H, F281del) reveal measurable effects on membrane insertion suggesting that defective membrane integration of bestrophin-1 may represent a potential disease mechanism for a small subset of Best macular dystrophy-related mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号