共查询到20条相似文献,搜索用时 15 毫秒
1.
A new polymorphic probe which defines the region of chromosome 19 containing the myotonic dystrophy locus 总被引:3,自引:3,他引:3 下载免费PDF全文
K. Johnson P. Shelbourne J. Davies J. Buxton E. Nimmo M. J. Siciliano L. L. Bachinski M. Anvret H. Harley S. Rundle T. Miki H. Brunner R. Williamson 《American journal of human genetics》1990,46(6):1073-1081
The region of human chromosome 19 which includes the myotonic dystrophy locus (DM) has recently been redefined by the tight linkage between it and the gene for muscle-specific creatine kinase (CKMM), which lies just proximal to DM. Utilizing human/hamster hybrid cell lines containing defined breakpoints within this region, we have assigned a number of new probes close to DM. Two of these probes, p134B and p134C, were isolated from a single cosmid clone (D19S51) and detect the same BglI RFLP; p134C detects an additional RFLP with the enzyme PstI. Analysis of these probes in the Centre d'Etude du Polymorphisme Humain families demonstrates tight linkage with a number of markers known to be proximal to DM. A two-point lod score of 6.34 at theta = .025 demonstrates the linkage of this probe to DM. Analysis of a DM individual previously shown to be recombinant for other tightly linked markers indicates that p134C is distal to DM. This result indicates that both the new probe and the existing group of proximal probes including CKMM and ERCC1 probably flank DM and define the genetic interval into which this mutation maps. 相似文献
2.
H G Brunner H Smeets H M Lambermon M Coerwinkel-Driessen B A van Oost B Wieringa H H Ropers 《Genomics》1989,5(3):589-595
Employing 16 polymorphic DNA markers as well as the chromosome 19 centromere heteromorphism, we have performed a genetic linkage study in 26 families with myotonic dystrophy. Fourteen of these markers had been assigned previously to one of five different intervals of the 19cen-19q13.2 segment by using somatic cell hybrids. For the long arm of chromosome 19, a genetic map that encompasses 9 polymorphic markers and the DM gene has been constructed. Our studies indicate that the DM and CKMM genes map distal to the ApoC2-ApoE gene cluster and to the anonymous polymorphic markers D19S15 and D19S16, but proximal to the D19S22 marker. The orientation of DM and CKMM remains to be determined. 相似文献
3.
4.
Establishment of the mouse chromosome 7 region with homology to the myotonic dystrophy region of human chromosome 19q 总被引:3,自引:0,他引:3
A number of genetic markers, including ATP1A3, TGFB, CKMM, and PRKCG, define the genetic region on human chromosome 19 containing the myotonic dystrophy locus. These and a number of other DNA probes have been mapped to mouse chromosome 7 utilizing a mouse Mus domesticus/Mus spretus interspecific backcross segregating for the genetic markers pink-eye dilution (p) and chinchilla (cch). The establishment of a highly syntenic group conserved between mouse chromosome 7 and human chromosome 19q indicates the likely position of the homologous gene locus to the human myotonic dystrophy gene on proximal mouse chromosome 7. In addition, we have mapped the muscle ryanodine receptor gene (Ryr) to mouse chromosome 7 and demonstrated its close linkage to the Atpa-2, Tgfb-1, and Ckmm cluster of genes. In humans, the malignant hyperthermia susceptibility locus (MHS) also maps close to this gene cluster. The comparative mapping data support Ryr as a candidate gene for MHS. 相似文献
5.
6.
The syntenic relationship of proximal mouse chromosome 7 and the myotonic dystrophy gene region on human chromosome 19q 总被引:2,自引:0,他引:2
The syntenic relationship of the myotonic dystrophy (DM) gene region on human chromosome 19q and proximal mouse chromosome 7 was examined using an interspecific backcross between C3H/HeJ-gld/gld mice and Mus spretus. Segregation analyses were used to order homologs of nine human loci linked with the DM gene. Their order from the centromere was Prkcg, [Apoe, Atpa-2, Ckmm, D19S19h, Ercc-2], Cyp2b, Mag, Lhb. Two other murine loci, D7Rp2 and Ngfg, were also positioned within this interval. Homologs for five human chromosome 11 and 15 loci (Calc, Fes, Hras-1, Igflr, Tyr) were localized within an 18-cM span telomeric to Lhb. Comparison of the gene orders indicates an inversion extending from Prkcg through the interval between Mag and Lhb. This study establishes a detailed map of proximal mouse chromosome 7 that will be useful in identifying and determining whether new human chromosome 19 probes are linked to the DM region. 相似文献
7.
A reordering of human chromosome 19 long-arm DNA markers and identification of markers flanking the myotonic dystrophy locus 总被引:9,自引:0,他引:9
The gene for myotonic dystrophy (DM), the most common form of adult muscular dystrophy, has previously been mapped to the proximal long arm of chromosome 19. We have conducted linkage analysis on 53 DM families (comprising 421 individuals) using seven DM-linked DNA markers. This analysis, combined with our somatic cell hybrid mapping panel data, places the DM locus more distal on the chromosome 19 long arm than previously thought. Further, we have been able to unequivocally identify DNA markers that flank the disease locus. The definition of a 10-cM region of chromosome 19 that contains the DM locus should prove useful in both the search for the causative gene and the molecular diagnosis of DM. 相似文献
8.
9.
J Buxton P Shelbourne J Davies C Jones M B Perryman T Ashizawa R Butler D Brook D Shaw P de Jong 《Genomics》1992,13(3):526-531
Myotonic dystrophy (DM) is caused by a defect in an unknown gene that maps to 19q13.3, flanked by the tightly linked markers ERCC1 on the proximal side and D19S51 on the distal side. We report the isolation and characterization of overlapping YAC and cosmid clones around D19S51 for the construction of a physical map around this locus. The resulting contig contains the markers D19S51 and D19S62 (another new marker tightly linked to the DM locus) and the distal breakpoint of a radiation hybrid cell line used in the physical mapping of the DM region. We have compared the restriction maps of the YACs and cosmids with that of the genome to investigate the fidelity of these clones. 相似文献
10.
11.
Regional localisations and linkage relationships of seven RFLPs and myotonic dystrophy on chromosome 19 总被引:2,自引:2,他引:2
D. J. Shaw A. L. Meredith M. Sarfarazi H. G. Harley S. M. Huson J. D. Brook L. Bufton M. Litt T. Mohandas P. S. Harper 《Human genetics》1986,74(3):262-266
Summary We have studied the genetic linkage relationships of seven DNA polymorphisms on chromosome 19, with each other and with the myotonic dystrophy locus. The DNA sequences were localised to various regions of the chromosome using translocations in somatic cell hybrids. These results provide the basis for a linkage map of most of chromosome 19, and suggest that the myotonic dystrophy locus is close to the centromere. 相似文献
12.
D Schonk P van Dijk P Riegmann J Trapman C Holm T C Willcocks P Sillekens W van Venrooij E Wimmer A Geurts van Kessel 《Cytogenetics and cell genetics》1990,54(1-2):15-19
Hybridization studies using a panel of somatic cell hybrids with subchromosomal segments of 19q have localized the genes encoding hormone-sensitive lipase (LIPE), carcinoembryonic antigen (CEA), and small nuclear ribonucleoprotein polypeptide A (SNRPA) to various regions of 19q13.1; the cellular receptor for poliovirus sensitivity (PVS) to 19q13.2; and the genes coding for prostate-specific antigen (APS), human pancreatic kallikrein (KLK1), and small nuclear ribonucleoprotein 70-kD polypeptide (SNRP70) to 19q13.3----qter. Our results exclude several of these genes from being seriously considered as a candidate for the myotonic dystrophy gene on 19q. 相似文献
13.
The myotonic dystrophy (DM) mutation has been identified as a heritable unstable CTG trinucleotide repeat sequence. The intergenerational amplification of this sequence is an example of a new class of dynamic mutations responsible for human genetic diseases. To ascertain whether recombination activity influences, or is affected by, the presence of this unique sequence, a comprehensive study of the physical and genetic mapping data for the 1.5-Mb region of human chromosome 19q13.3, which contains the DM locus, was conducted. The recombination rate for this region was examined by correlating genetic distance to physical distance for six selected marker loci. The following markers span the DM region: 19qCEN-p alpha 1.4 (D19S37)-APOC2-CKM-pE0.8 (D19S115)-pGB2.6 (DM)-p134c (D19S51)-19qTER. Initial linear regression analysis of these two parameters failed to reveal a significant linear correlation (coefficient of determination, r2 = .19), suggesting nonuniform rates of recombination. However, the presence of a recombination hot spot was believed to be unlikely, as the marker-to-marker pairs that showed the greatest deviation in recombination frequency were not restricted to a specific region of the 1.5 Mb studied and had relatively broad confidence intervals, as reflected by low LOD values. A second linear regression analysis using only marker intervals with high LOD scores (Zmax > 22) showed linear correlation (r2 = .68) for the entire 1.5-Mb region. This analysis indicated a relatively uniform recombination frequency in the 1.5-Mb region spanning the DM locus. Furthermore, the recombinations observed were neither under- nor overrepresented on DM chromosomes. Consequently, recombination activity is unlikely to influence, or be affected by, the presence of the DM mutation. 相似文献
14.
Definition of subchromosomal intervals around the myotonic dystrophy gene region at 19q 总被引:18,自引:0,他引:18
D Schonk M Coerwinkel-Driessen I van Dalen F Oerlemans B Smeets J Schepens T Hulsebos D Cockburn Y Boyd M Davis 《Genomics》1989,4(3):384-396
The localization to 19q of the gene causing myotonic dystrophy (DM) has been defined more precisely by refinement of the physical location of several linked markers. A somatic cell hybrid mapping panel from cells with t(1;19), t(12;19), and t(X;19) translocation products was constructed to define five different intervals across 19q. In addition, we have derived a series of cell hybrids by irradiation of a der(19)-only hybrid to further subdivide the cen-q13.1 region. Using an array of 36 cloned genes, anonymous DNAs, and enzyme markers, we have tested the location of the panel breakpoints and refined the regional assignment of several of these markers. All markers tightly linked to DM are localized mainly within 19q13.2, thus suggesting that the DM gene is also close to this region. 相似文献
15.
C Tsilfidis A E MacKenzie G Shutler S Leblond J Bailly K Johnson R Williamson J Siegel-Bartelt R G Korneluk P Shelbourne 《American journal of human genetics》1991,49(5):961-965
Recent genetic linkage studies have mapped the myotonic dystrophy (DM) locus to 19q13.3. All closely linked DM markers identified to date have been located on the centromeric side of the disease locus, with a relatively large genetic interval (9 cM) observed between the nearest distal marker and DM. We show here that the recently described marker p134C is tightly linked to DM (peak lod score 35.8 at peak recombination fraction .006) and confirm the previous suggestion that the p134C locus, D19S51 maps distal to the disease locus. D19S51 and the closest proximal flanking loci, ERCC1 and D19S115 (pE0.8), define a small genetic interval of less than 2 cM that contains the DM locus. 相似文献
16.
A chromosome 19 clone from a translocation breakpoint shows close linkage and linkage disequilibrium with myotonic dystrophy 总被引:13,自引:0,他引:13
The gene for myotonic dystrophy (DM), the most common form of adult muscular dystrophy, is situated on the proximal long arm of chromosome 19. Although there exist markers that are tightly linked to the DM locus, its precise location is unknown. The identification and characterization of additional DNA probes closely linked to the DM locus continue to be priorities. In this study, we report on the linkage between a new DNA marker, designated p alpha 1.4P, and the DM locus in 50 families. The probe p alpha 1.4P was derived from a cloned breakpoint junction fragment from the chromosomal translocation t(14;19)(q32;q13.1). This translocation has been previously described in some cases of chronic lymphocytic leukemia. We have identified a BanI restriction fragment length polymorphism that is detected by p alpha 1.4P. Segregation analysis between this RFLP and DM revealed close linkage between the two loci (lod = 10.95, theta = 0). Furthermore, statistical evidence for linkage disequilibrium between p alpha 1.4P and the DM locus in a French Canadian population was found. Finally, by means of a somatic cell hybrid mapping panel, p alpha 1.4P was sublocalized to 19q12----19q13.2. 相似文献
17.
Summary To verify the reliability of secretor status for prenatal diagnosis of myotonic dystrophy (DM), 179 amniotic fluid samples were compared with saliva or urine samples of the infants by hemagglutination inhibition. While no discrepancies were observed, problems could arise with intermediate results. Additionally, secretor typing is only informative in 8.4% of patients. 相似文献
18.
Localisation of the myotonic dystrophy locus to 19q13.2–19q13.3 and its relationship to twelve polymorphic loci on 19q 总被引:2,自引:0,他引:2
Helen G. Harley Kate V. Walsh Shelley Rundle J. David Brook Manssor Sarfarazi Manuela C. Koch Jo L. Floyd Peter S. Harper Duncan J. Shaw 《Human genetics》1991,87(1):73-80
Summary The order of fourteen polymorphic markers localised to the long arm of human chromosome 19 has been established by multipoint mapping in a set of 40 CEPH (Centre d'Étude de Polymorphisme Humain, Paris) reference families. We report here the linkage relationship of the myotonic dystrophy (DM) locus to twelve of these markers as studied in 45 families with DM. The resulting genetic map is supported by the localisation of the DNA markers in a panel of somatic cell hybrids. Ten of the twelve markers have been shown to be proximal to the DM gene and two, PRKCG and D19S22, distal but at distances of approximately 25 cM and 15 cM, respectively. The closest proximal markers are APOC2 (apolipoprotein C-II) and CKM (creatine kinase, muscle) approximately 3 cM and 2 cM from the DM gene respectively, in the order APOC2-CKM-DM. The distance between APOC2, CKM and DM (of the order of 2 million base pairs) and their known orientation should permit directional chromosome walking and jumping. The data presented here should enable us to determine whether or not new markers are distal to APOC2/CKM and thus potentially flank the DM gene. 相似文献
19.
20.
Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. 总被引:5,自引:2,他引:3 下载免费PDF全文
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanneal to form duplexes. Here additional evidence is presented that is consistent with the existence of S-DNA structures. We demonstrate that S-DNA structures can form between two complementary strands containing equal numbers of repeats. In addition, we show that both the propensity for S-DNA formation and the structural complexity of S-DNAs formed increase with increasing repeat length. S-DNA structures were also analyzed by electron microscopy, confirming that the two strands are slipped out of register with respect to each other and confirming the structural polymorphism expected within long tracts of trinucleotide repeats. For (CTG)50.(CAG)50 two distinct populations of slipped structures have been identified: those involving </=10 repeats per slippage, which appear as bent/kinked DNA molecules, and those involving >10 repeats, which have multiple loops or hairpins indicative of complex alternative DNA secondary structures. 相似文献