共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glutathione S-transferase in human organs 总被引:2,自引:0,他引:2
Glutathione S-transferase (GSH-T) distribution has been investigated in human tissues. The relative contribution of each species to total enzyme activity of the various tissues has been compared. "Cationic" (pI greater than 7.5) "neutral" (pI 6-6.5) and "anionic" (pI less than 5.4) species of GSH-T were separated by isoelectric focusing. "Cationic" GSH-Ts (ligandin) quantitated by radioimmunoassay were present in all tissues studied. Highest concentrations were in liver, kidney, duodenum, testis and adrenal. "Neutral" and "anionic" GSH-Ts were not present in every tissue or in every specimen of some tissues studied. Marked inter-organ and inter-individual variation in the relative concentration of the 3 GSH-T species may explain individual and organ susceptibility to drugs and toxins and underlines the need for future studies to examine individual enzymes rather than total activity. 相似文献
3.
4.
Glutathione S-transferase composition of rat erythrocytes 总被引:1,自引:0,他引:1
With 1-chloro-2,4-dinitrobenzene as the electrophilic substrate, the specific activity of glutathione S-transferase in rat haemolysates was found to range from 0.002 to 0.013 mumol/min/mg haemoglobin at 30 degrees C. To establish the glutathione S-transferase composition, chromatofocusing was used which indicated the presence of a single soluble isoenzyme with an apparent pI of 6.1. A molecular weight of 48,000 was determined for the enzyme by gel filtration. The transferase enzyme in intact erythrocytes is shown to catalyze the formation of S-(2,4-dinitrophenyl)-glutathione from 1-chloro-2,4-dinitrobenzene and endogenous glutathione. Efflux of this conjugate from erythrocytes proceeded at a rate of 13 nmol/min/ml at 37 degrees C. 相似文献
5.
An inducible, cytosolic glutathione S-transferase (GST) was purified from Streptomyces griseus. GST isoenzymes with pI values of 6.8 and 7.9 used standard GST substrates including 1-chloro-2,4-dinitrobenzene. GST had subunit and native M(r)s of 24 and 48, respectively, and the N-terminal sequence SMILXYWDIIRGLPAH. 相似文献
6.
T Nishinaka R Kodaka H Nanjo T Terada T Mizoguchi T Nishihara 《Biochemistry international》1992,26(1):135-141
Rat lens contains two classes of glutathione S-transferase (GST) isozymes; one is class mu, Yb1-Yb1, and the other is class pi, Yp-Yp, judged from their molecular weights, immunological properties and N-terminal amino acid sequences. The expression pattern of GST isozymes in the rat lens is different from that in pig and bovine lenses which have only class pi and class mu isozymes, respectively. 相似文献
7.
Tina Gauger Felix Weihs Sonja Mayer Bernhard Krismer Jan Liese Melanie Kull Ralph Bertram 《Microbial biotechnology》2012,5(1):129-134
An intracellular approach for monitoring protein production in Staphylococcus aureus is described. mCherry, fused to the dodecapeptide Tip, was capable of inducing tetracycline repressor (TetR). Time‐ and concentration‐dependent production of mCherry could be correlated to TetR‐controlled GFPmut2 activity. This approach can potentially be extended to native S. aureus proteins. 相似文献
8.
The concentration of basic, near-neutral and acid GSH S-transferase was measured in 18 organs from each of 9 male human subjects using radial immunodiffusion. Basic transferases were detectable in all tissues studied. Highest concentrations were found in liver, testis, kidney, adrenal and jejunum while low levels were found in bladder, muscle and thyroid. The concentration in liver was 230 times higher than that in thyroid. Near-neutral GSH S-transferase were absent in all tissues in 5 of the 9 individuals studied. When present they were widely distributed, highest concentrations being found in liver, testis, muscle, adrenal and brain and lowest levels in thyroid, lung, duodenum, stomach, heart and kidney. Acid GSH S-transferases were present in every individual studied although they were undetectable in the liver of a single subject. Highest concentrations were present in colon, jejunum, ileum, bladder, spleen and lung while low concentrations were found in liver. Our study provides conclusive evidence of marked inter-individual and inter-organ variation of the three groups of human GSH S-transferase. 相似文献
9.
Cho SG Lee YH Park HS Ryoo K Kang KW Park J Eom SJ Kim MJ Chang TS Choi SY Shim J Kim Y Dong MS Lee MJ Kim SG Ichijo H Choi EJ 《The Journal of biological chemistry》2001,276(16):12749-12755
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that can activate the c-Jun N-terminal kinase and the p38 signaling pathways. It plays a critical role in cytokine- and stress-induced apoptosis. To further characterize the mechanism of the regulation of the ASK1 signal, we searched for ASK1-interacting proteins employing the yeast two-hybrid method. The yeast two-hybrid assay indicated that mouse glutathione S-transferase Mu 1-1 (mGSTM1-1), an enzyme involved in the metabolism of drugs and xenobiotics, interacted with ASK1. We subsequently confirmed that mGSTM1-1 physically associated with ASK1 both in vivo and in vitro. The in vitro binding assay indicated that the C-terminal portion of mGSTM1-1 and the N-terminal region of ASK1 were crucial for binding one another. Furthermore, mGSTM1-1 suppressed stress-stimulated ASK1 activity in cultured cells. mGSTM1-1 also blocked ASK1 oligomerization. The ASK1 inhibition by mGSTM1-1 occurred independently of the glutathione-conjugating activity of mGSTM1-1. Moreover, mGSTM1-1 repressed ASK1-dependent apoptotic cell death. Taken together, our findings suggest that mGSTM1-1 functions as an endogenous inhibitor of ASK1. This highlights a novel function for mGSTM1-1 insofar as mGSTM1-1 may modulate stress-mediated signals by repressing ASK1, and this activity occurs independently of its well-known catalytic activity in intracellular glutathione metabolism. 相似文献
10.
Cytosolic glutathione S-transferases are composed of two monomeric subunits. These monomers are the products of different gene families designated alpha, mu, and pi. Dimerization yields either homodimeric or heterodimeric holoenzymes within the same family. The members of this complex group of proteins have been linked to the detoxification of environmental chemicals and carcinogens, and have been shown to be overexpressed in normal and tumor cells following exposure to cytotoxic drugs. They also are overexpressed in carcinogen-induced rat liver preneoplastic nodules in rat liver. In all of these cases, the changes in expression of glutathione S-transferases are paralleled by increased resistance to cytotoxic chemicals. The degree of resistance is related to the substrate specificity of the isozyme. The relationship of the glutathione S-transferase genes to drug resistance has been directly demonstrated by gene transfer studies, where cDNAs encoding the various subunits of glutathione S-transferase have been transfected into a variety of cell types. This review discusses the results of numerous studies that associate resistance to alkylating agents with overexpression of protective detoxifying glutathione S-transferase enzymes. 相似文献
11.
Kostaropoulos I Papadopoulos AI Metaxakis A Boukouvala E Papadopoulou-Mourkidou E 《Insect biochemistry and molecular biology》2001,31(4-5):313-319
The correlation between the natural levels of GST and the tolerance to the insecticide decamethrin (dMT), as well as the interaction between the molecules of affinity purified enzyme and the insecticide were investigated in order to collect further information on the obscure role of the Glutathione S-transferase system (GST) as a mechanism of defence against pyrethroids. The studies were carried out, comparatively, on the larvae and pupae developmental stages of the coleopteran Tenebrio molitor, which exhibit varying natural levels of GST activity. No stage dependent susceptibility of the insect against pyrethroid insecticides was found during the first 24 h, however 48 h after treatment, the KD50 dose increased significantly due to the recovery of some individuals from the larvae stage. Simultaneous injection of decamethrin with compounds which inhibit GST activity in vitro, resulted in an increased tolerance, which was more pronounced in the pupae stage. Inhibition studies combined with competitive fluorescence spectroscopy and high pressure liquid chromatography (HPLC) showed that the insecticide binds probably to the active site of the enzyme inhibiting its activity towards CDNB in a competitive manner, but is not conjugated with GSH. According to this, GST offers a passive protection towards pyrethroid insecticides by binding to their molecule in a sequestering mechanism. 相似文献
12.
Glutathione S-transferase pull-down assays using dehydrated immobilized glutathione resin 总被引:3,自引:0,他引:3
Ren L Chang E Makky K Haas AL Kaboord B Walid Qoronfleh M 《Analytical biochemistry》2003,322(2):164-169
We have developed an affinity-precipitation technique to facilitate conducting glutathione S-transferase (GST) pull-down assays. The dehydrated immobilized glutathione resin format, when combined with microcentrifuge spin columns, is a powerful tool that enables the simultaneous performance of resin hydration, the binding of the GST fusion protein, and the pull-down step with the appropriate protein partner in a semihigh-throughput fashion (multiple samples processed at the same time). The entire assay process is shortened and recovery is enhanced when coupled with a spin-column format, providing a convenient way to study protein-protein interactions. We successfully tested the resin format/technique in three common pull-down applications utilizing radiolabeled, overexpressed, and activated endogenous interacting protein partners. 相似文献
13.
用巯基试剂5.5'-二硫双(2-硝基苯甲酸)(DTNB)测得人胎盘谷胱甘肽S-转移酶(GST-π)的总巯基数为每亚基2个,均为表面巯基,,其中一个与DTNB反应快,被修饰后可导致酶活力全部丧失。另一巯基与DTNB反应较慢,可能与酶活力无关。用在12℃测定剩余巯基和Stallcup-Koshland作图法求得DTNB修饰快反应和慢反应巯基的速度常数分别为44056和162min~(-1)(mol/L)~(-1)。底物谷胱甘肽的衍生物S-正辛烷谷胱甘肽(S-o-GSH)能保护GST-π能保护的快反应巯基免受DTNB的修饰,使反应速度常数随着S-o-GSH浓度的增高而降低。S-o-GSH也能保护酶被N-乙基马来酰亚胺(NEMI)修饰失活,但不能保护慢反应巯基被DTNB修饰。另一底物2,4-二硝基氯苯(CDNB)对NEMI的修饰失活没有保护作用。上述结果提示快反应巯基参与GST-π和谷胱甘肽的结合,是组成活性中心的重要基因。 相似文献
14.
A simple and rapid method for the purification of glutathione S-transferase is described. The physical and kinetic properties of purified enzyme are reported. The protein is constituted of two identical subunits with a total molecular weight of 46,000 daltons. The isoelectric focusing of crude cytosol or purified preparation gives a single peak of activity with a pI of 7.1. The kinetic analysis shows a relatively strict substrate specificity. Only 1-chloro-2,4-dinitrobenzene is conjugated to reduced glutathione at an appreciable rate. The peroxidase activity of the enzyme with respect to cumene hydroperoxide as substrate is negligible. Hemin and bilirubin are competitive inhibitors of catalytic activity. 相似文献
15.
16.
Glutathione S-transferase gene polymorphisms in Turkish patients with diabetes mellitus 总被引:1,自引:0,他引:1
Yalin S Hatungil R Tamer L Ates NA Dogruer N Yildirim H Karakas S Atik U 《Cell biochemistry and function》2007,25(5):509-513
Glutathione S-transferases (GSTs) are enzymes involved in the metabolism of many disease-causing electrophilic substrates and protect the cells against oxidative stress. In the present study, we investigated the GSTM1, GSTT1 and GSTP1 gene polymorphisms in diabetic patients and healthy individuals and searched whether polymorphisms in GST genes are associated with diabetes mellitus (DM) in the Turkish population. The study population consisted of 98 unrelated healthy individuals and 98 patients with DM. Genotyping of GSTM1, GSTT1 and GSTP1 genes was performed using real time polymerase chain reaction with a Light Cycler instrument. Patients had a higher frequency of the GSTM1 null genotype than the control group (Odds ratios, OR = 3.7; 95% confidence intervals, CI = 2.05-6.70). However, there was no significant difference in the frequencies of the GSTT1 and GSTP1 gene polymorphisms between the patients and control group. The combined analysis of these three GST genotypes showed a further DM risk increase (OR = 5.7, 95% CI = 1.51-31.07). This is the first study to determine the association of diabetes with GST gene polymorphism in the Turkish population. These results show that GSTM1 null genotype may play a significant role in the aetiopathogeneses of DM and the GSTM1 gene may be a useful marker in the prediction of DM susceptibility of the Turkish population. 相似文献
17.
胆红素对人胎盘谷胱甘肽S-转移酶的别构效应 总被引:1,自引:0,他引:1
胆红素是人胎盘谷胱甘肽S—转移酶(GST—π)的别构效应剂,在胆红素存在下,底物谷胱甘肽(GSH)呈同促正协同效应:胆红素浓度愈高,Hill氏系数(n_H)也愈大,胆红素本身对酶的结合也呈同促正协同效应。胆红素还能加速GST-π在缺乏疏基保护剂时的自然失活,加速GST-π的氨基被2,4,6—三硝基苯磺酸(TNBS)、胍基被丁二酮以及羧基被N-乙基-N’-(3-二甲胺基丙基)羧二亚胺(EDC)的修饰,但却抑制N-乙基顺丁二酰亚胺(NEMI)对疏基的修饰,胆红素这种对失活作用的影响可能和胆红素引起GST-π空间构象的变化有关,对其他可能性也作了讨论。 相似文献
18.
非生物胁迫因子如高盐、干旱、低温、重金属污染等严重影响植物的生长和繁殖。植物进化出一系列包括各种酶类物质的系统抵抗逆境所带来的氧化伤害。谷胱甘肽转移酶(glutathione S-transferase,GST,EC 2.5.1.18)是由多种功能的蛋白质组成的超家族,在植物遭受高盐、干旱、低温胁迫时,GSTs可清除活性氧,保护植物细胞膜结构和蛋白质活性。对谷胱甘肽转移酶在植物抵御非生物胁迫中的作用进行综述,为今后利用基因工程育种提供理论依据。 相似文献
19.
20.
Blood is a convenient source of biomarkers. Readily obtainable, it immerses most tissues in the body and is therefore likely to contain cell-derived proteins and peptides that may provide information about various biological processes. Serum proteome and peptidome profiling--using mass spectrometry (MS), for example--may thus show a functional correlate of biological events and disorders. To this end, serum peptides must be enriched and interfering substances removed: a step that should be automated to a degree, reproducible and free of bias if it is to generate a test with any future diagnostic potential. The current protocol allows simultaneous analysis of large numbers of peptides using reversed-phase, magnetic particle-assisted sample processing with a matrix-assisted laser desorption/ionization-time of flight MS readout. It may be used for diagnostic or predictive purposes, specifically as an in vitro readout of proteolytic activities with qualitative and quantitative product analysis, and enables profiling of 96 samples in less than 27 h. 相似文献