首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Quinolinic acid is an excitatory, neurotoxic tryptophan metabolite proposed to play a role in the pathogenesis of hepatic encephalopathy. This involvement was investigated in rat and rabbit models of fulminant hepatic failure at different stages of hepatic encephalopathy. Although plasma and brain tryptophan levels were significantly increased in all stages of hepatic encephalopathy, quinolinic acid levels increased three- to sevenfold only in the plasma, CSF, and brain regions of animals in stage IV hepatic encephalopathy. Plasma-CSF and plasma-brain quinolinic acid levels in rats and rabbits with fulminant hepatic failure were strongly correlated, with CSF and brain concentrations ∼10% those of plasma levels. Moreover, there was no significant regional difference in brain quinolinic acid concentrations in either model. Extrahepatic indoleamine-2,3-dioxygenase activity was not altered in rats in stage IV hepatic encephalopathy, but hepatic l -tryptophan-2,3-dioxygenase activity was increased. These results suggest that quinolinic acid synthesized in the liver enters the plasma and then accumulates in the CNS after crossing a permeabilized blood-brain barrier in the end stages of liver failure. Furthermore, the observation of low brain concentrations of quinolinic acid only in stage IV encephalopathy suggests that the contribution of quinolinic acid to the pathogenesis of hepatic encephalopathy in these animal models is minor.  相似文献   

2.
Chronic liver failure induced by portocaval anastomosis (PCA) in Wistar rats resulted in a dramatic increase in histamine concentration in hypothalamus and a smaller, but clearly pronounced, elevation in the rest of brain. Between 10 and 120 days following surgery, shunted rats exhibited a histamine level 2.4- to 13-fold higher in hypothalamus and 1.5- to 2.5-fold higher in the rest of brain as compared to their control, sham-operated pairs. There were no significant changes in histamine concentration in the other examined tissues. The increase in brain histamine could not be attributed to the inhibition of its degradation, because activity of histamine N-methyltransferase remained unchanged for at least 40 days. Although the activity of histidine decarboxylase also remained unchanged when measured at a saturating concentration of L-histidine, the increase in histamine content in brain seems to be due to its enhanced synthesis brought about by increased availability of L-histidine in the tissue, as indicated by two to four times higher concentrations of this amino acid in PCA rats.  相似文献   

3.
Abstract: Quinolinic acid (QUIN), an excitotoxic tryptophan metabolite, has been identified and measured in human cerebrospinal fluid (CSF) using a mass-fragmentographic method. Furthermore, its content has been evaluated in frontal cortex obtained at autopsy from the cadavers of patients who died after hepatic coma. During the coma, the concentration of QUIN in the CSF was 152 ± 38 pmol ml-1. In contrast, the concentration in control patients affected by different pathologies was 22 ± 7 pmol ml-1. In the frontal cortex of patients who died after episodes of hepatic encephalopathy, the content of QUIN was three times higher than in controls (2.6 ± 0.6 versus 0.80 ± 0.08 nmol/g wet weight). As a result of these investigations we are now able to extend our previous observations on the increase of QUIN in the brains of rats used as experimental models of hepatic encephalopathy to man. QUIN should therefore be added to the list of compounds possibly involved in the pathogenesis and symptomatology of brain disorders associated with liver failure.  相似文献   

4.
Abstract: Rats treated with oxindole (10–100 mg/kg i.p.), a putative tryptophan metabolite, showed decreased spontaneous locomotor activity, loss of the righting reflex, hypotension, and reversible coma. Brain oxindole levels were 0.05 ± 0.01 nmol/g in controls and increased to 8.1 ± 1.7 or 103 ± 15 nmol/g after its administration at doses of 10 or 100 mg/kg i.p., respectively. To study the role that oxindole plays in the neurological symptoms associated with acute liver failure, we measured the changes of its concentration in the brain after massive liver damage, and we investigated the possible metabolic pathways leading to its synthesis. Rats treated with either thioacetamide (0.2 and 0.4 g/kg i.p., twice) or galactosamine (1 and 2 g/kg i.p.) showed acute liver failure and a large increase in blood or brain oxindole concentrations (from 0.05 ± 0.01 nmol/g in brains of controls to 1.8 ± 0.3 nmol/g in brains of thioacetamide-treated animals). Administration of tryptophan (300–1,000 mg/kg p.o.) caused a twofold increase, whereas administration of indole (10–100 mg/kg p.o.) caused a 200-fold increase, of oxindole content in liver, blood, and brain, thus suggesting that indole formation from tryptophan is a limiting step in oxindole synthesis. Oral administration of neomycin, a broad-spectrum, locally acting antibiotic agent able to reduce intestinal flora, significantly decreased brain oxindole content. Taken together, our data show that oxindole is a neurodepressant tryptophan metabolite and suggest that it may play a significant role in the neurological symptoms associated with acute liver impairment.  相似文献   

5.
Quinolinic acid, an endogenous excitotoxin, and kynurenic acid, an antagonist of excitatory amino acid receptors, are believed to be synthesized from tryptophan after the opening of the indole ring. They were measured in the rat brain and other organs using gas chromatography-mass spectrometry or HPLC. The enzyme indoleamine 2,3-dioxygenase, capable of cleaving the indole ring of tryptophan, was induced by administering bacterial endotoxins to rats, which significantly increased the brain content of both quinolinic and kynurenic acids. Nicotinylalanine, an analogue of kynurenine, inhibited this endotoxin-induced accumulation of quinolinic acid while potentiating the accumulation of kynurenic acid. The possibility of significantly increasing brain concentrations of kynurenic acid without a concomitant increase in quinolinic acid may provide a useful approach for studying the role of these electrophysiologically active tryptophan metabolites in brain function and preventing the possible toxic actions of abnormal synthesis of quinolinic acid.  相似文献   

6.
The effects of ammonium ions on the release of glutamic acid from the rat cerebral cortex were measured in vivo using cortical cups and a multiple ion detection technique. The neosynthesis of this amino acid from glucose was also studied in two experimental models of hepatic encephalopathy: (1) rats receiving large amounts of ammonium acetate (i.p.) and (2) rats with a surgically constructed portocaval anastomosis. Intraperitoneal administration of 8 mmol/kg of ammonium acetate increased the cortical release of glutamic acid from 9.1 +/- 0.8 to 19 +/- 2 (nmol X cm-2 X min-1). Moreover, 20 min after ammonium acetate administration the rate of incorporation of 13C2, originating from [13C]glucose, into glutamic acid increased by 65%. In several brain areas of rats bearing a portocaval anastomosis and fed ad libitum for 4 weeks, the content of glutamic acid slightly increased and the rate of formation of [13C2]glutamate from [13C]glucose approximately doubled. These results indicate that ammonium ions increase the release and the formation of glutamic acid in the brain. The resulting increased concentration of this amino acid in the extracellular spaces may be one of the mechanisms of ammonia toxicity in vivo.  相似文献   

7.
Abstract: Elevated brain concentrations of the neurotoxin and NMDA receptor agonist quinolinic acid (QUIN) have been demonstrated in portacaval-shunted (PCS) rats, a chronic hepatic encephalopathy (HE) model. Increased brain QUIN levels have also been shown in acute hyperammonemic rats. In the present study, the plasma and brain (neocortical) QUIN levels in chronic PCS rats were investigated. The study also included a single exogenous ammonium acetate (NH4Ac; 5.2 mmol/kg, i.p.) challenge to precipitate a reversible hepatic coma. Compared with sham-operated controls, chronic PCS rats exhibited decreased rather than increased plasma and brain QUIN levels. The plasma-to-brain QUIN ratio was not found to be altered. The NH4Ac administration induced coma in all of the PCS rats 20–25 min after the challenge, and this coma was resolved within 60–75 min. No relevant temporal relationship between changes in brain QUIN levels and the neurological status in the PCS rats was observed. Therefore, our results do not support the contention that increased brain QUIN levels per se are involved in the pathogenesis of HE.  相似文献   

8.
Abstract: The administration of tryptophan (Trp)-free amino acid mixtures to depressed patients responding to serotonin [5-hydroxytryptamine (5-HT)] uptake inhibitors (SSRIs) worsens their clinical state. This procedure reduces Trp availability to brain and thus impairs 5-HT synthesis. We have examined the influence of Trp depletion on extracellular 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the rat brain using in vivo microdialysis. The treatment with the SSRI fluvoxamine significantly increased 5-HT content in dialysates from frontal cortex, as compared with control rats (10.2 ± 2.7 vs. 3.1 ± 0.4 fmol per fraction), whereas 5-HIAA was unaffected. Food deprivation for 20 h reduced dialysate 5-HT content to almost control values in fluvoxamine-treated rats (10.2 ± 2.7 vs. 4.3 ± 0.6 fmol per fraction) but did not alter dialysate 5-HIAA content (7.8 ± 0.4 vs. 7.2 ± 0.5 pmol per fraction). The administration of Trp-free amino acid mixtures to fluvoxamine-treated rats significantly attenuated the release of 5-HT in frontal cortex (~50%) and, to a lesser extent, in the midbrain raphe nuclei. This effect was more marked in rats not deprived from food before the experiments (67% reduction of dialysate 5-HT content in frontal cortex) and was absent in control rats (treated with saline). In contrast, dialysate 5-HIAA was markedly affected by Trp depletion in all groups, including controls (65–75% reductions). These data show that the administration of an amino acid mixture with the same composition and dose (in milligrams per kilogram of body weight) as those inducing a severe mood impairment in depressed patients reduces 5-HT and 5-HIAA concentrations in brain dialysates. The reduction of 5-HT release, however, occurs only in animals previously treated with the antidepressant fluvoxamine for 2 weeks, which would be consistent with a marked reduction of 5-HT-mediated transmission in treated depressed patients but not in healthy controls.  相似文献   

9.
10.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

11.
Abstract: Kinetic studies of [3H]γ-aminobutyric acid ([3H]GABA) after an intravenous injection were performed in normal rats and in rats with severe degree of hepatic encephalopathy due to fulminant hepatic failure induced by galactosamine. Moreover, plasma and brain GABA levels, and GABA and glutamic acid decarboxylase activity were studied in some brain areas. After intravenous injection, [3H]GABA disappeared very rapidly in the blood of normal rats, with a prompt increase of 3H metabolites. In comatose rats, a delayed disappearance of [3H]GABA.as parallelled by a lower amount of metabolites, indirectly indicating a peripheral decrease of GABA-transaminase activity. The amount of [3H]GABA in brain was lightly but constantly lower in comatose rats than in controls, indicating that the change in permeability of the blood-brain barrier in hepatic encephalopathy does not affect the [3H]GABA uptake of the brain. Furthermore, the assay of endogenous GABA in blood, whole brain, and brain areas did not show any significant difference in any of the two groups. The finding that glutamic acid decarboxylase activity in brain was reduced, together with the indirect evidence of a reduction in GABA-transaminase, may account for the steady state of GABA in hepatic encephalopathy. However, the reduction in glutamic acid decarboxylase activity is in favor of a functional derangement at the GABA-ergic nerve terminals in this pathological condition.  相似文献   

12.
Quinolinic acid is a neurotoxic tryptophan metabolite produced locally during immune activation. The present study tested the hypothesis that macrophages are an important source. In normal gerbils, the macrophage toxin liposome-encapsulated clodronate depleted blood monocytes and decreased quinolinic acid levels in liver (85%), duodenum (33%), and spleen (51%) but not serum or brain. In a model of CNS inflammation (an intrastriatal injection of 5 microg of lipopolysaccharide), striatal quinolinic acid levels were markedly elevated on day 4 after lipopolysaccharide in conjunction with infiltration with macrophages (lectin stain). Liposome-encapsulated clodronate given 1 day before intrastriatal lipopolysaccharide markedly reduced parenchymal macrophage invasion in response to lipopolysaccharide infusion and attenuated the increases in brain quinolinic acid (by 60%). A systemic injection of lipopolysaccharide (450 microg/kg) increased blood (by 38-fold), lung (34-fold), liver (23-fold), spleen (8-fold), and striatum (25-fold) quinolinic acid concentrations after 1 day. Liposome-encapsulated clodronate given 4 days before systemic lipopolysaccharide significantly attenuated the increases in quinolinic acid levels in blood (by 80%), liver (87%), spleen (80%), and striatum (68%) but had no effect on the increases in quinolinic acid levels in lung. These results are consistent with the hypothesis that macrophages are an important local source of quinolinic acid in brain and systemic tissues during immune activation.  相似文献   

13.
Profound insulin-induced hypoglycemia is associated with early-onset neuronal damage that resembles excitotoxic lesions and is attenuated in severity by antagonists of N-methyl-D-aspartate receptors. Hypoglycemia increases L-tryptophan concentrations in brain and could increase the concentration of the L-tryptophan metabolite quinolinic acid (QUIN), an agonist of N-methyl-D-aspartate receptors and an excitotoxin in brain. Therefore, we investigated the effects of 40 min of profound hypoglycemia (isoelectric EEG) and 1-2 h of normoglycemic recovery on the concentrations of QUIN in brain tissue, brain extracellular fluid, and plasma in male Wistar rats. Plasma QUIN increased 6.5-fold by the time of isoelectricity (2 h after insulin administration). Regional brain QUIN concentrations increased two- to threefold during hypoglycemia and increased a further two- to threefold during recovery. However, no change in extracellular fluid QUIN concentrations in hippocampus occurred during hypoglycemia or recovery as measured using in vivo microdialysis. Therefore, the increases in brain tissue QUIN concentrations may reflect elevations of QUIN in the intracellular space or be secondary to the increases in QUIN in the vascular compartment in brain per se. L-Tryptophan concentrations increased more than twofold during recovery only. Serotonin decreased greater than 50% throughout the brain during hypoglycemia, while 5-hydroxyindoleacetic acid concentrations increased more than twofold during hypoglycemia and recovery. In striatum, dopamine was decreased 75% during hypoglycemia but returned to control values during recovery, while striatal 3,4-dihydroxyphenylacetic acid and homovanillic acid were increased more than twofold during both hypoglycemia and recovery.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Rats received intraventricular (i.v.t.) injections of 5,7-dihydroxytryptamine (5,7-DHT) (100-600 micrograms). Some animals also received intraperitoneal injections of the 5-hydroxytryptamine uptake blocker fluoxetine (FX) (20 mg/kg) or the norepinephrine uptake blocker desmethylimipramine (DMI) (48 mg/kg) 30-90 min prior to i.v.t. 5,7-DHT. Rats were killed between 2 and 35 days following i.v.t. 5,7-DHT, brains were dissected, and regions were assayed for thyrotropin-releasing hormone (TRH) by radioimmunoassay. Dose-dependent increases in TRH content following i.v.t. 5,7-DHT were noted in the brainstem and hippocampus. DMI pretreatment blocked the increase in hippocampal TRH, but not in brainstem TRH. FX pretreatment was ineffective in blocking any increases in TRH content. These results suggest differential regulation of regional TRH content by interactions with specific neurotransmitter systems.  相似文献   

15.
Rats were given L-tryptophan, 50 mg/kg i.p., and its concentration in the CNS was monitored in individual freely moving animals using repeated sampling of cisternal CSF and concurrent striatal dialysis. The 5-hydroxytryptamine metabolite 5-hydroxyindoleacetic acid (5-HIAA) was also measured. Results were compared with changes of central tryptophan and 5-HIAA concentrations in brains of rats killed at various times after administration of L-tryptophan, 50 mg/kg i.p. Tryptophan changes in CSF were proportionate to those in whole brain and followed essentially identical time courses. Results for the striatal dialysate and whole striatum also paralleled each other. Similarly, results for 5-HIAA showed proportionality between CSF and brain and between dialysate and striatum. The data obtained were used to determine pharmacokinetic data for individual rats, i.e., areas under curves for both tryptophan and 5-HIAA and half-lives for the decline of tryptophan. Kinetic parameters varied considerably from rat to rat. However, mean half-lives for tryptophan in CSF, brain, dialysate, and striatum were all comparable. Results in general show the value of repeated CSF sampling and intracerebral dialysis for concurrent monitoring of changes of indole metabolism in the whole brain and a specific brain region, respectively. The methods should be suitable for the continuous monitoring of changes of central transmitter metabolism in parallel with observation of behavior following environmental or dietary changes or drug administration. They also should be of use in the investigation of drug kinetics in the CNS.  相似文献   

16.
In mammalian peripheral organs, 3-hydroxyanthranilic acid oxygenase (3HAO), catalyzing the conversion of 3-hydroxyanthranilic acid to quinolinic acid, constitutes a link in the catabolic pathway of tryptophan to NAD. Because of the possible involvement of quinolinic acid in the initiation of neurodegenerative phenomena, we examined the presence and characteristics of 3HAO in rat brain tissue. A simple and sensitive assay method, based on the use of [carboxy-14C]3-hydroxyanthranilic acid as a substrate, was developed and the enzymatic product, [14C]quinolinic acid, identified by chromatographic and biochemical means. Kinetic analysis of rat forebrain 3HAO revealed a Km of 3.6 +/- 0.5 microM for 3-hydroxyanthranilic acid and a Vmax of 73.7 +/- 9.5 pmol quinolinic acid/h/mg tissue. The enzyme showed pronounced selectivity for its substrate, since several substances structurally and metabolically related to 3-hydroxyanthranilic acid caused less than 25% inhibition of activity at 500 microM. Both the Fe2+ dependency and the distinct subcellular distribution (soluble fraction) of brain 3HAO indicated a close resemblance to 3HAO from peripheral tissues. Examination of the regional distribution in the brain demonstrated a 10-fold variation between the region of highest (olfactory bulb) and lowest (retina) 3HAO activity. The brain enzyme was present at the earliest age tested (7 days postnatum) and increased to 167% at 15 days before reaching adult levels. Enzyme activity was stable over extended periods of storage at -80 degrees C. Taken together, these data indicate that measurements of brain 3HAO may yield significant information concerning a possible role of quinolinic acid in brain function and/or dysfunction.  相似文献   

17.
Abstract: Acute administration of vitamin B6 to rats (10 mg/kg body weight) led to reduced urinary excretion of N 1-methyl nicotinamide and methyl pyridone carboxamide, indicating inhibition of the oxidative metabolism of tryptophan. There was a considerable reduction in the production of 14CO2 from [ ring -2-14C]tryptophan, and a significant inhibition of hepatic tryptophan oxygenase when measured in liver homogenates, together with an increase in the concentration of tryptophan in plasma. There was an increase in both the concentration of tryptophan in the brain and the uptake into the brain of peripherally administered [3H]tryptophan, accompanied by a small increase in the rate of synthesis of 5-hydroxy-tryptamine in the brain. It is suggested that this increase in the uptake of tryptophan into the brain following a relatively large dose of vitamin B6 may explain the beneficial action of the vitamin in some cases of depressive illness.  相似文献   

18.
Stressful treatments and immune challenges have been shown previously to elevate brain concentrations of tryptophan. The role of the autonomic nervous system in this neurochemical change was investigated using pharmacological treatments that inhibit autonomic effects. Pretreatment with the ganglionic blocker chlorisondamine did not alter the normal increases in catecholamine metabolites, but prevented the increase in brain tryptophan normally observed after footshock or restraint, except when the duration of the footshock period was extended to 60 min. The footshock- and restraint-related increases in 5-hydroxyindoleacetic acid (5-HIAA) were also prevented by chlorisondamine. The increases in brain tryptophan caused by intraperitoneal injection of endotoxin or interleukin-1 (IL-1) were also prevented by chlorisondamine pretreatment. The footshock-induced increases in brain tryptophan and 5-HIAA were attenuated by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phenoxybenzamine or the muscarinic cholinergic antagonist atropine. Thus the autonomic nervous system appears to be involved in the stress-related changes in brain tryptophan, and this effect is due to the sympathetic rather than the parasympathetic limb of the system. Moreover, the main effect of the sympathetic nervous system is exerted on beta- as opposed to alpha-adrenergic receptors. We conclude that activation of the sympathetic nervous system is responsible for the stress-related increases in brain tryptophan, probably by enabling increased brain tryptophan uptake. Endotoxin and IL-1 also elevate brain tryptophan, presumably by a similar mechanism. The increase in brain tryptophan appears to be necessary to sustain the increased serotonin catabolism to 5-HIAA that occurs in stressed animals, and which may reflect increased serotonin release.  相似文献   

19.
Abstract: The de novo production and subsequent disposition of the endogenous excitotoxin quinolinic acid (QUIN) was investigated in vitro in tissue slices from rat brain and liver. Incubation of tissue with QUIN's immediate bioprecursor 3-hydroxyanthranilic acid (3-HANA) in oxygenated Krebs-Ringer buffer yielded measurable amounts of QUIN both in the tissue and in the incubation medium. Saturation was reached between 16 and 64 μM 3-HANA (166 pmol of QUIN formed per milligram of protein after a 60-min incubation with 64 μM 3-HANA). In the brain, more QUIN was recovered from the tissue than from the incubation medium at all time points examined (5 min to 4 h). In contrast, the tissue-to-medium ratio for QUIN in parallel experiments with hepatic slices was ? 1. The disposition of newly synthesized QUIN was further elaborated in tissue slices that had been preincubated for 60 min with 64 μM 3-HANA. Subsequent incubation of brain tissue in fresh buffer revealed a steady but relatively slow efflux of QUIN from the cellular compartment, with >30% remaining in the tissue after a 90-min incubation. Analogous experiments with liver slices showed that >93% of newly synthesized QUIN had entered the extracellular compartment within 30 min. Striatal and nigral slices obtained 7 days after an intrastriatal ibotenic acid injection showed severalfold increases in QUIN production compared with control tissues, in all likelihood due to astrogliosis and associated large increases in 3-hydroxyanthranilic acid oxygenase activity. In addition, the apparent tissue-to-medium ratio was markedly reduced in striatal slices from lesioned animals. Taken together, these data indicate that both brain and liver cells have a rather limited capacity to retain QUIN, and that 3-hydroxyanthranilic acid oxygenase activity is a critical determinant controlling extracellular QUIN concentrations in both organs. Changes in the activity of QUIN's biosynthetic enzyme in the brain can therefore be expected to influence the possible function of QUIN as an endogenous agonist at the N-methyl-D-aspartate receptor in health and disease.  相似文献   

20.
Abstract: The relationship between plasma and brain tryptophan (TRP) concentrations and brain 5-hydroxytryptamine (5-HT) metabolism was studied in weanling rats fed diets containing either 0.4 g or 1.45 g TRP/ 100 g casein hydrolysate. Both groups gained weight comparably though food intakes were generally higher in the low-TRP group. Severe depletion of plasma total and free TRP and of brain TRP, 5-HT, and 5-hydrox-yindoleacetic acid (5-HIAA) occurred within 1 day of feeding the 0.4% TRP diet. Levels became stable after 7 days. The decreased brain TRP concentration of the rats on the 0.4% TRP diet did not cause a compensatory rise of the tryptophan hydroxylase (TRP OHase) activity in vitro. In the low-TRP group, neither plasma free TRP nor total TRP correlated significantly with brain TRP and although plasma TRP/large neutral amino acid (NAA) ratios (TRP/NAA) correlated significantly ( P < 0.05) with the time course of brain TRP, this statistical relationship depended almost completely on the variation of the TRP values alone. In the higher TRP group none of these correlations were significant. A plot of mean plasma free TRP versus brain TRP gave two distinct regression lines with similar slopes and corresponding to values before and after 7 days on the diet. The time course of brain 5-hydroxyindole concentrations did not parallel those of brain TRP and suggested that changes of TRP OHase activity also had an influence on 5-HT synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号