首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Diplococcus pneumoniae that lack a membrane-localized DNAase are defective in transformation because entry of DNA into the cell is blocked. Such mutants still bind DNA on the outside of the cell. The bound DNA is double-stranded and its double-stranded molecular weight is unchanged. Its sedimentation behavior in alkali, however, shows that it has undergone single-strand breakage. The breaks are located randomly in both strands of the bound DNA at a mean separation of 2 × 106 daltons of single-stranded DNA. Both binding and single-strand breakage occur in the presence of EDTA. Single-strand breaks are similarly formed on binding of DNA to normally transformable cells in the presence of EDTA. The single-strand breaks appear to be a consequence of attachment. DNA may be bound to the cell surface at the point of breakage.A mutant that is partially blocked in entry also binds DNA mainly on the outside of the cell. In the presence of EDTA, DNA bound by this mutant undergoes only single-strand breaks. In the absence of EDTA, however, double-strand breaks occur, apparently as a result of the initiation of entry. It is possible that the double-strand breaks arise from additional single-strand breaks opposite those that occurred on binding. The double-strand breaks presumably result from action of the membrane DNAase as it begins to release oligonucleotides from one strand segment while drawing the complementary strand segment into the cell.  相似文献   

2.
Deoxyribonucleic acid (DNA) from the covalently closed circular DNA molecules of Pseudomonas phage PM2 was found to enter normally transformable cells of Streptococcus pneumoniae as readily as linear bacterial DNA. In a mutant of S. pneumoniae that lacks a membrane nuclease and is defective in DNA entry, as many molecules of PM2 DNA as of linear DNA were bound on the outside of cells at equivalent DNA concentrations. Bound DNA suffered single-strand breaks, but circular DNA with preexisting breaks was bound no better than closed circles. In the presence of divalent cations, DNA bound to cells of a leaky nuclease mutant showed double-strand breaks. At least the majority of PM2 DNA that entered normal cells was single stranded. These results are consistent with a mechanism for DNA entry in which DNA is first nicked on binding, then a double-strand break is formed by cleavage of the complementary strand, and continued processive action of the membrane nuclease facilitates entry of the originally nicked strand. Although the bulk of circular donor DNA appeared to enter in this way, the results do not exclude entry of a small amount of donor DNA in an intact form.  相似文献   

3.
It was reported previously that Adriamycin converts form I covalently closed circular, supercoiled bacteriophage PM2 DNA to the relaxed circular form II DNA; no form III linear DNA was produced as a result of the extracellular action of Adriamycin in the presence of NADH-dehydrogenase. When form II DNA, produced by the action of Adriamycin, was treated with the BAL 31 nuclease, a single sharp DNA band after agarose gel electrophoresis indicated the presence of only full-length linear form III DNA. As one of its activities, the BAL 31 nuclease introduces a single-strand break in the complementary strand opposite a preexisting single-strand break. When form II DNA, produced by the action of gamma irradiation, was reacted with the BAL enzyme, the resulting linear DNA molecules exhibited a broad range of molecular weights, indicating the presence of many single-strand breaks in the substrate form II DNA. When the Adriamycin-produced form II DNA was treated with restriction endonucleases that cleave PM2 DNA at a single site, either with or without pretreatment with the BAL enzyme, the formation of only full-length linear DNA was observed. Thus, the drug is capable of introducing one or only a very limited number of single-strand breaks into supercoiled DNA; furthermore, these breaks are introduced at random sites along the DNA molecules.  相似文献   

4.
DNA damage by peroxynitrite characterized with DNA repair enzymes.   总被引:9,自引:0,他引:9       下载免费PDF全文
The DNA damage induced by peroxynitrite in isolated bacteriophage PM2 DNA was characterized by means of several repair enzymes with defined substrate specificities. Similar results were obtained with peroxynitrite itself and with 3-morpholinosydnonimine (SIN-1), a compound generating the precursors of peroxynitrite, nitric oxide and superoxide. A high number of base modifications sensitive to Fpg protein which, according to HPLC analysis, were mostly 8-hydroxyguanine residues, and half as many single-strand breaks were observed, while the numbers of oxidized pyrimidines (sensitive to endonuclease III) and of sites of base loss (sensitive to exonuclease III or T4 endonuclease V) were relatively low. This DNA damage profile caused by peroxynitrite is significantly different from that obtained with hydroxyl radicals or with singlet molecular oxygen. The effects of various radical scavengers and other additives (t-butanol, selenomethionine, selenocystine, desferrioxamine) were the same for single-strand breaks and Fpg-sensitive modifications and indicate that a single reactive intermediate but not peroxynitrite itself is responsible for the damage.  相似文献   

5.
Unidirectional pulsed-field electrophoresis improves the separation of single-stranded DNA molecules longer than 20 kilobases (kb) in alkaline agarose gels compared to static-field electrophoresis. The greatest improvement in separation is for molecules longer than 100 kb. The improved resolution of long molecules with unidirectional pulsed-field electrophoresis makes possible the measurement of lower frequencies of single-strand breaks. The analytical function that relates the length and mobility of single-stranded DNA electrophoresed with a static field also applies to unidirectional pulsed field separations. Thus, the computer programs used to measure single-strand breaks are applicable to both undirectional pulsed- and static-field separations. Unidirectional pulsed-field electrophoresis also improves the separation of double-stranded DNA in neutral agarose gels. The function relating molecular length and mobility for double-stranded DNA separated by unidirectional pulsed-field electrophoresis is a superset of the function for single-stranded DNA. The coefficients of this function can be determined by iterative procedures.  相似文献   

6.
The DNA cleavage reaction of eukaryotic topoisomerase II produces nicked DNA along with linear nucleic acid products. Therefore, relationships between the enzyme's DNA nicking and double-stranded cleavage reactions were determined. This was accomplished by altering the pH at which assays were performed. At pH 5.0 Drosophila melanogaster topoisomerase II generated predominantly (greater than 90%) single-stranded breaks in duplex DNA. With increasing pH, less single-stranded and more double-stranded cleavage was observed, regardless of the buffer or the divalent cation employed. As has been shown for double-stranded DNA cleavage, topoisomerase II was covalently bound to nicked DNA products, and enzyme-mediated single-stranded cleavage was salt reversible. Moreover, sites of single-stranded DNA breaks were identical with those mapped for double-stranded breaks. To further characterize the enzyme's cleavage mechanism, electron microscopy studies were performed. These experiments revealed that separate polypeptide chains were complexed with both ends of linear DNA molecules generated during cleavage reactions. Finally, by use of a novel religation assay [Osheroff, N., & Zechiedrich, E. L. (1987) Biochemistry 26, 4303-4309], it was shown that nicked DNA is an obligatory kinetic intermediate in the topoisomerase II mediated reunion of double-stranded breaks. Under the conditions employed, the apparent first-order rate constant for the religation of the first break was approximately 6-fold faster than that for the religation of the second break. The above results indicate that topoisomerase II carries out double-stranded DNA cleavage/religation by making two sequential single-stranded breaks in the nucleic acid backbone, each of which is mediated by a separate subunit of the homodimeric enzyme.  相似文献   

7.
N-Hydroxypyridine-2-thione (2-HPT), known to release hydroxyl radicals on irradiation with visible light, and two related compounds, viz. N-hydroxypyridine-4-thione (4-HPT) and N-hydroxyacridine-9-thione (HAT), were tested for their potency to induce DNA damage in L1210 mouse leukemia cells and in isolated DNA from bacteriophage PM2. DNA single-strand breaks and modifications sensitive to various repair endonucleases (Fpg protein, endonuclease III, exonuclease III, T4 endonuclease V) were quantified. Illumination of cell-free DNA in the presence of 2-HPT and 4-HPT gave rise to damage profiles characteristic for hydroxyl radicals, i.e. single-strand breaks and the various endonuclease-sensitive modifications were formed in the same ratios as after exposure to established hydroxyl radical sources. In contrast, HAT plus light gave rise to a completely different DNA damage profile, namely that characteristic for singlet oxygen. Experiments with various scavengers (t-butanol, catalase, superoxide dismutase) and in D2O as solvent confirmed that hydroxyl radicals are directly responsible for the DNA damage caused by photoexcited 2-HPT and 4-HPT, while the damage by HAT plus light is mediated by singlet oxygen and type I reactions. The type of DNA damage characteristic of hydroxyl radicals was also observed in L1210 mouse leukemia cells when treated with 2-HPT plus light or with H2O2 at 0 degrees C. t-Butanol (2%) inhibited the cellular DNA damage by approximately 50%. A dose of 2-HPT plus light that generated single-strand breaks at a frequency of 5 x 10(-7)/bp was associated with 50% cell survival. No DNA damage and cytotoxicity was observed after treatment with 2-HPT in the dark. We propose that 2-HTP and 4-HTP may serve as new agents to study the consequences of DNA damage induced by hydroxyl radicals in cells. In addition, the data provide direct evidence that hydroxyl radicals are ultimately responsible for the genotoxic effects caused by H2O2 in the dark.  相似文献   

8.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):289-302
Form II PM2 DNA, which contained bleomycin-mediated single-strand breaks, was purified and treated with the extracellular endonuclease from Alteromonas BAL 31. This enzyme cleaves the phosphodiester backbone opposite a single-strand break to yield a double-strand break. The locations of these double-strand breaks were determined relative to the cleavage sites produced by the restriction enzyme HindIII. The experimental procedure was as follows. Form I PM2 DNA was treated with bleomycin to produce alkali-labile bonds. These were hydrolyzed by alkali treatment and the DNA, now containing single-strand breaks, was purified and treated with the BAL 31 enzyme and the HindIII enzyme to determine the positions of the original alkali-labile bonds. It was found that the single-strand breaks and alkali-labile bonds were introduced at preferred sites on the PM2 genome, since electrophoretic analyses of the DNA after the HindIII digestion revealed DNA bands of discrete sizes. The molecular weights of the DNA fragments produced by these treatments indicate that single-strand breaks and alkali-labile bonds occur at the same sites as those previously determined for direct double-strand scissions introduced by bleomycin at neutral pH. Some of the specific sites of double-strand scissions mediated by bleomycin at neutral pH (Lloyd et al., 1978b) are also shown here to be relatively more reactive than other sites when the DNA contains superhelical turns.  相似文献   

9.
Cigarette tar causes single-strand breaks in DNA   总被引:2,自引:0,他引:2  
The results of this study demonstrate, for the first time, that cigarette tar causes DNA damage. Incubation in vitro of phage PM2 DNA with aqueous extracts of cigarette tar results in the introduction of DNA single-strand breaks. The effects of protective enzymes and radical scavengers indicate the involvement of active oxygen species. Although the semiquinone components of tar reduce dioxygen forming superoxide radicals and hydrogen peroxide, our results suggest that hydroxyl radicals formed via metal catalyzed decomposition of hydrogen peroxide are ultimately responsible for the DNA lesions. Our results also suggest that the metals in tar are reduced by the semiquinone components of tar and by superoxide at comparable rates.  相似文献   

10.
Summary Spheroplasts of Pseudomonas BAL-31/PM2, obtained by treatment of the bacteria with lysozyme, can be infected with purified DNA from bacteriophage PM2. After 4 h of incubation the yield of progeny phage reaches a value of 107-6×107 plaque forming units/g PM2 DNA. The yield increases linearly with the concentration of DNA over at least 3 orders of magnitude.The biological activity of double-stranded circular PM2 DNA containing one or more single-strand breaks per molecule (component II), does not differ significantly from that of intact PM2 DNA (component I). Single-stranded PM2 DNA obtained by denaturation of component II, and the irreversible alkali-denatured form of component I are also infective.  相似文献   

11.
When aqueous DNA solution was irradiated with 1.2 MHz continuous ultrasound in the presence of cysteamine, the number of ultrasound-induced double-strand breaks of DNA was not influenced, but the number of ultrasound-induced single-strand breaks of DNA was reduced to about one-fifth that of the irradiated control. When the effect of cysteamine on the template activity of the ultrasound-irradiated DNA was investigated, the cysteamine was found to exert a leveling effect on the linear decrease of the template activity against ultrasonic intensity. Since cysteamine was known as an effective radical scavenger, the results of the experiment were regarded to suggest that (1) the double-strand breaks were exclusively induced by the mechanical effect of ultrasound, (2) the majority of single-strand breaks were produced by water radicals arising from cavitation, (3) the initial part in the decrease of the template activity was due to the double-strand breaks arising from mechanical effect, and (4) the further decrease of the template activity depended mainly on the single-strand breaks arising from water radicals.  相似文献   

12.
A method is described for measuring the average number of nuclease-induced single- and double-strand breaks per DNA molecule. The procedure involves measuring the weight-average molecular weight of DNase I-digested DNA under neutral and alkaline conditions. A statistical equation is used to calculate the number of breaks per single- or double-stranded DNA molecule from the respective weight-average molecular weights. Enzymatic incorporation of32P into the 5′-OH ends of DNase I-induced breaks gave an independent measurement of the number of breaks per DNA molecule. Results obtained by the two different methods were in good agreement. In agreement with earlier reports we find that magnesium-activated DNase catalyzes a high frequency of single-strand breaks in DNA. The frequency of double-strand breaks is low, but significantly higher than can be explained by random accumulation of single-strand breaks. Our data suggest that the frequency of double-strand scission is affected by DNase-metal ion interactions.  相似文献   

13.
R S Lloyd  C W Haidle  D L Robberson 《Gene》1979,7(3-4):303-316
Electron microscopy of purified full-length linear duplex molecules produced by bleomycin reaction with PM2 DNA revealed low frequencies of closed circular duplex molecules as well as linear duplex molecules with opposed ends (cyclized molecules which have dissociated to yield a gap between the termini). The occurrence of these latter forms indicates that double-strand scissions produced by bleomycin reaction consist of two single-strand scissions which are physically staggered on the complementary strands. Analysis of the temperature dependence for cyclization led to the estimate that an average of 1.7 +/- 0.44 base-pairs (2.6 +/- 0.5 base pairs without base-stacking energies) occur between the staggered breaks. The reassociated termini cannot be ligated with T4 ligase. When PM2 DNA was fragmented at several sites within each molecule, circular duplexes and linear duplexes with opposed ends with a range of sizes from 350 base pairs up to full-length PM2 DNA were observed. Analysis of the frequency distribution of lengths of these fragments indicates that most, if not all, of the specific sites for bleomycin-directed double-strand scissions in PM2 DNA contain representatives of the same two base single-stranded termini.  相似文献   

14.
The number of strand breaks induced by the combination of chromate and glutathione (GSH) in PM2 DNA was effectively reduced upon addition of the hydroxyl radical scavengers dimethyl sulphoxide (DMSO), formate and benzoate. Administration of catalase also led to a depression of DNA degradation whereas superoxide dismutase (SOD) had very little influence. Essentially the same results were obtained in experiments employing a chromium(V) complex Na4(GSH)4Cr.8H20, which is an intermediate chromium species isolated from the reduction of chromate by glutathione. DNA cleavage was dependent on the presence of iron (FeCl3). When compared with the number of breaks produced by FeCl3 and GSH alone, chromate stimulated the generation of single-strand breaks. These findings suggest that hydroxyl radicals are one ultimate DNA cleaving agent in both reactions. A reaction scheme for the production of hydroxyl radicals is proposed.  相似文献   

15.
Purification and properties are described for an endonuclease isolated from calf thymus which attacks double-stranded, unmodified DNA, primarily by making single-strand breaks. No detectable acid-soluble products arise from the reaction. Double-strand breaks may occasionally be produced by the introduction of single-strand breaks on opposite strands in close proximity. The enzyme does not attack denatured DNA and is not inhibited by tRNA. Although added divalent cations are not required for activity, the enzyme is inhibited by EDTA, which suggests an essential role for bound cations; reaction is inhibited by Ca2+. The endonuclease has a broad pH optimum and is inactivated by preincubation at temperatures of 45 degrees C and higher. The molecular weight as determined by gel chromatography is about 30 000. Analysis of the products of reaction on a defined substrate, bacteriophage T3 DNA, by sedimentation in alkaline sucrose density gradients indicates limit products with chain lengths of about 0.8 X 10(6) daltons. On electrophoresis in agarose gels these products were shown to be heterogeneous in size. The endonuclease appears to generate 3'-hydroxyl and 5'-phosphate ends. The ability of the endonuclease to utilize bovine DNA as substrate argues against a restriction role for this enzyme.  相似文献   

16.
The cleavage of double-stranded DNA by S1 endonuclease was studied by sucrose density gradient centrifugation analysis. The enzyme introduced no single-strand breaks into native T7 DNA under conditions where heat-denatured T7 DNA was completely degraded. By using enzyme at about 6 times higher the amount required for complete degradation of the heat-denatured DNA, it was possible to make a few single-strand breaks in native T7 DNA. Under the conditions where native T7 DNA is absolutely resistant to the enzyme, the susceptibility of locally altered structures naturally present and/or artificially induced in native double-stranded DNA to the enzyme was studied. It was evidenced that S1 endonuclease can cleave circular covalently closed, superhelical fl RFI DNA, depurinated T7 DNA, bleomycin-treated T7 DNA containing internal single-strand breaks, but not cleave intercalating drug-bound T7 DNA.  相似文献   

17.
PM2 is a bacteriophage which has closed circular double-stranded DNA as a genome, which is the sole source for endonuclease assay for a single strand break in the fmol range. Therefore, it is important to isolate PM2 DNA with low control nicks for the endonuclease assay. Usually, the isolation method of phage DNA is to use ultracentrifugation which takes at least 4 days. In this report, a fast and effective method which takes only 2 days was developed to purify DNA using polyethylene glycol (PEG) 8000 and the yields of phage DNA isolated by these two methods were compared. The method using PEG 8000 increased the yield of PM2 DNA from 31.2% to 45.2%, and decreased the nick from 17.1% to 13.1%. Recently, the complete PM2 DNA genome sequence of 10,079 bp was published. The exact number of nucleotides of PM2 DNA is important for the correct enzyme assay which measures nicks generated by an endonuclease. The correct calculation of endonuclease activity of rpS3 for nick-circle assay was performed to measure single-strand breaks in this report. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Kowalska-Loth  B.  Bubko  I.  Komorowska  B.  Szumiel  I.  Staron  K. 《Molecular biology reports》1998,25(1):21-26
An in vitro system composed of nicked pBR322 DNA and purified topoisomerase I was employed to study the efficiency of the topoisomerase I-driven single-strand to double-strand DNA breaks conversion. At 1.4 × 105 topoisomerase I activity units per mg DNA about 20% single-strand nicks were converted into double-strand breaks during 30 min due to topoisomerase I action. Camptothecin inhibited the conversion. The conversion was also inhibited when the relaxing activity of the used topoisomerase I was increased by phosphorylation of the enzyme with casein kinase 2. The presented data suggest that topoisomerase I may be involved in production of double-stranded breaks in irradiated cells and that this process positively depends on the amount of topoisomerase I but not on its phosphorylation state.  相似文献   

19.
We describe a novel system for two dimensional electrophoresis at neutral and alkaline pH for determining the double-stranded and single-stranded lengths of DNA. With this system we analysed the mode of micrococcal nuclease digestion of DNA in cellular and SV40 viral chromatin and of supercoiled SV40 DNA. The enzyme reaction occurred in two steps : the enzyme first introduced single-strand breaks, then converted these to double-strand breaks by an adjacent cleavage on the opposite strand. Digestion of cellular chromatin DNA occurred by a similar mechanism. Chromatin fragments produced by limited micrococcal nuclease action contained many single-strand breaks, which may be important when this method is used to prepare chromatin fragments for biochemical and biophysical studies. Nucleosome monomer to tetramer produced at later stages of digestion contained few if any single-strand breaks.  相似文献   

20.
Summary The formation and repair of double-strand breaks induced in DNA by MMS was studied in haploid wild type and MMS-sensitive rad6 mutant strains of Saccharomyces cerevisiae with the use of the neutral and alkaline sucrose sedimentation technique. A similar decrease in average molecular weight of double-stranded DNA from 5–6x108 to 1–0.7x108 daltons was observed following treatment with 0.5% MMS in wild type and mutant strains. Incubation of cells after MMS treatment in a fresh drug-free growing medium resulted in repair of double-strand breaks in the wild type strain, but only in the exponential phase of growth. No repair of double-strand breaks was found when cells of the wild type strain were synchronized in G-1 phase by treatment with factor, although DNA single-strand breaks were still efficiently repaired. Mutant rad6 which has a very low ability to repair MMS-induced single-strand breaks, did not repair double-strand breaks regardless of the phase of growth.These results suggest that (1) repair of double-strand breaks requires the ability for single-strand breaks repair, (2) rejoining of double-strand breaks requires the availability of two homologous DNA molecules, this strongly supports the recombinational model of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号