首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Epstein-Barr virus (EBV), a member of the gamma-herpesvirus family, is involved in the development of several diseases, and the infection is believed to persist for life in latent form. Ionizing radiation at clinically relevant doses may increase the amount of virus reactivation in B cells, and the combination of radiation with stress could amplify EBV reactivation. In vitro experiments were performed on several cell lines, including EBV-positive Burkitt lymphoma cells. The presence of the immediate-early protein ZEBRA, which is a hallmark of EBV reactivation, was evaluated using flow cytometry, which enabled us to measure the percentage of ZEBRA-positive cells. The process was studied previously in the EBV-positive Burkitt lymphoma cell line B95-8. Forty-eight hours after irradiation alone, 13.6 and 19.9% ZEBRA-positive cells were observed at 2 and 4 Gy, respectively, compared to the basal level of 1.85%. Thus irradiation induces EBV reactivation. The addition of a glucocorticoid (the final effector of the stress response) had no effect on EBV reactivation in our model. However, the combination of radiation and treatment with a glucocorticoid (dexamethasone) increased the expression of ZEBRA in B95-8 cells (15.8 and 28.75% of the cells was positive at 24 and 48 h after gamma irradiation, respectively). Thus the combination of gamma radiation and a glucocorticoid may play an important role in EBV reactivation.  相似文献   

4.
5.
6.
7.
Infection of human monocytes by Epstein-Barr virus (EBV) has been linked to a decrease in the production of proinflammatory mediators as well as an impairment of phagocytosis. Considering the key role of protein kinases C (PKCs) in many biological functions of monocytes, including phagocytosis, we investigated the effects of EBV on the PKC activity in infected monocytes. Our results indicate that infection of monocytes by EBV impairs both phorbol 12-myristate 13-acetate (PMA)-induced translocation of PKC isozymes alpha and beta from cytosol to membrane as well as the PKC enzymatic activity. Similarly, the subcellular distribution of the receptor for activated C kinase (RACK), an anchoring protein essential to PKC translocation, was also found to be reduced in EBV-infected monocytes. Transfection of 293T cells with an expression vector coding for the immediate-early protein ZEBRA of EBV resulted in impaired PMA-induced translocation and activity of PKC. Using co-immunoprecipitation assays, the ZEBRA protein was found to physically interact with the RACK1 protein. Thus interaction of ZEBRA with RACK likely results in the inhibition of PKC activity, which in turn affects functions of monocytes, such as phagocytosis.  相似文献   

8.
9.
Epstein-Barr virus (EBV) is a herpes virus associated with several human tumors. The EBV protein, ZEBRA, is a transactivator of the basic leucine zipper family (bZip). It binds to specific sequences on DNA and is able to interact with cellular proteins such as p53. The interaction of the ZEBRA protein with its cognate DNA sequences is stable as long as the dimerization domain is functional. Recent work from this laboratory identified a ZEBRA variant (Z206) with a single amino acid change at residue 206. An alanine is substituted for a serine, and this replacement is present in 72% of nasopharyngeal carcinoma from Europe and North Africa. As amino acid 206 lies within the dimerization domain it could be instrumental in interactions with other proteins. The yeast two-hybrid system was used to study ZEBRA-protein interactions. As ZEBRA by itself is a transactivator in yeast, it cannot be used directly in this assay. This paper describes modifications in ZEBRA amino acid sequences, rendering it usable in the yeast two-hybrid assay. We compared the dimerization capacity of the Z206 variant to that of ZEBRA from B95-8 (Z95) and observed that reporter gene activity with Z206 was consistently lower than that of Z95 (P < 0.05). Furthermore, no interaction was found to occur between either form of ZEBRA (Z206 or Z95) and the tumor suppressor, p53 in the yeast two-hybrid system.  相似文献   

10.
11.
Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.  相似文献   

12.
13.
Nuclear aggresomes induced by proteins containing an expanded polyglutamine (polyQ) tract are pathologic hallmarks of certain neurodegenerative diseases. Some GFP fusion proteins lacking a polyQ tract may also induce nuclear aggresomes in cultured cells. Here we identify single missense mutations within the basic DNA recognition region of Bam HI Z E B virus replication activator (ZEBRA), an Epstein-Barr virus (EBV)-encoded basic zipper protein without a polyQ tract, that efficiently induced the formation of nuclear aggresomes. Wild-type (WT) ZEBRA was diffusely distributed within the nucleus. Four non-DNA-binding mutants, Z(R179E), Z(R183E), Z(R190E), and Z(K178D) localized to the periphery of large intranuclear spheres, to discrete nuclear aggregates, and to the cytoplasm. Other non-DNA-binding mutants, Z(N182K), Z(N182E), and Z(S186E), did not exhibit this phenotype. The interior of the spheres contained promyelocytic leukemia and HSP70 proteins. ZEBRA mutants directly induced the nuclear aggresome pathway in cells with and without EBV. Specific cellular proteins (SC35 and HDAC6) and viral proteins (WT ZEBRA, Rta, and BMLF1) but not other cellular or viral proteins were recruited to nuclear aggresomes. Co-transfection of WT ZEBRA with aggresome-inducing mutants Z(R183E) and Z(R179E) inhibited late lytic viral protein expression and lytic viral DNA amplification. This is the first reported instance in which nuclear aggresomes are induced by single missense mutations in a viral or cellular protein. We discuss conformational changes in the mutant viral AP-1 proteins that may lead to formation of nuclear aggresomes.  相似文献   

14.
TheBamHI Z EBV replication activator (ZEBRA) protein is involved in the switch from latency to productive cycle of Epstein-Barr virus. A recombinant ZEBRA protein was synthesized and assessed in enzymelinked immunosorbent assay (ELISA) for serum IgG response in nasopharyngeal carcinoma (NPC) patients. In 100 NPC serum samples that were positive for IgA to the EBV viral capsid antigen (VCA), 75% had IgG anti-ZEBRA antibodies. In contrast, only 3/83 (3.6%) serum samples from healthy donors and 2/50 (4%) from other cancers were positive for IgG to ZEBRA. Interestingly, in a selected group of 100 NPC sera negative for IgA to VCA, 25% contained IgG anti-ZEBRA antibodies. This suggests that the ELISA for IgG anti-ZEBRA may also identify earlier cases of NPC not detected by the conventional immunofluorescence test for IgA to VCA.  相似文献   

15.
Ragoczy T  Miller G 《Journal of virology》1999,73(12):9858-9866
Initiation of the Epstein-Barr virus (EBV) lytic cycle is controlled by two immediate-early genes, BZLF1 and BRLF1. In certain epithelial and B-cell lines, their protein products, ZEBRA and Rta, stimulate their own expression, reciprocally stimulate each other's expression, and activate downstream viral targets. It has been difficult to examine the individual roles of these two transactivators in EBV-infected lymphocytes, as they are expressed simultaneously upon induction of the lytic cycle. Here we show that the Burkitt lymphoma cell line Raji represents an experimental system that allows the study of Rta's role in the lytic cycle of EBV in the absence and presence of ZEBRA. When expressed in Raji cells, exogenous Rta does not activate endogenous BZLF1 expression, yet Rta remains competent to transactivate certain downstream viral targets. Some genes, such as BaRF1, BMLF1, and a late gene, BLRF2, are maximally activated by Rta itself in the absence of detectable ZEBRA. The use of the Z(S186A) mutant form of ZEBRA, whose transactivation function is manifest only by coexpression of Rta, allows identification of a second class of lytic cycle genes, such as BMRF1 and BHRF1, that are activated in synergy by Rta and ZEBRA. It has already been documented that of the two activators, only ZEBRA stimulates the BRLF1 gene in Raji cells. Thus, there is a third class of viral genes activated by ZEBRA but not Rta. Moreover, ZEBRA exhibits an inhibitory effect on Rta's capacity to stimulate the late gene, BLRF2. Consequently ZEBRA may function to repress Rta's potential to activate some late genes. Raji cells thus allow delineation of the combinatorial roles of Rta and ZEBRA in control of several distinct classes of lytic cycle genes.  相似文献   

16.
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.  相似文献   

17.
ZEBRA protein converts Epstein-Barr virus (EBV) infection from the latent to the lytic state. The ability of ZEBRA to activate this switch is strictly dependent on the presence of serine or threonine at residue 186 of the protein (A. Francis, T. Ragoczy, L. Gradoville, A. El-Guindy, and G. Miller, J. Virol. 72:4543-4551, 1999). We investigated whether phosphorylation of ZEBRA protein at this site by a serine-threonine protein kinase was required for activation of an early lytic cycle viral gene, BMRF1, as a marker of disruption of latency. Previous studies suggested that phosphorylation of ZEBRA at S186 by protein kinase C (PKC) activated the protein (M. Baumann, H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, R. Zeidler, H. J. Delecluse, and W. Hammerschmidt, J. Virol 72:8105-8114, 1998). Two residues of ZEBRA, T159 and S186, which fit the consensus for phosphorylation by PKC, were phosphorylated in vitro by this enzyme. Several isoforms of PKC (alpha, beta(1), beta(2), gamma, delta, and epsilon ) phosphorylated ZEBRA. All isoforms that phosphorylated ZEBRA in vitro were blocked by bisindolylmaleimide I, a specific inhibitor of PKC. Studies in cell culture showed that phosphorylation of T159 was not required for disruption of latency in vivo, since the T159A mutant was fully functional. Moreover, the PKC inhibitor did not block the ability of ZEBRA expressed from a transfected plasmid to activate the BMRF1 downstream gene. Of greatest importance, in vivo labeling with [(32)P]orthophosphate showed that the tryptic phosphopeptide maps of wild-type ZEBRA, Z(S186A), and the double mutant Z(T159A/S186A) were identical. Although ZEBRA is a potential target for PKC, in the absence of PKC agonists, ZEBRA is not constitutively phosphorylated in vivo by PKC at T159 or S186. Phosphorylation of ZEBRA by PKC is not essential for the protein to disrupt EBV latency.  相似文献   

18.
Gao X  Wang H  Sairenji T 《Journal of virology》2004,78(21):11798-11806
Latent Epstein-Barr virus (EBV) is reactivated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in EBV-infected cells. In this study, we found that TPA up-regulated phosphorylation of p38, a mitogen-activated protein kinase, and activated c-myc mRNA in EBV-positive epithelial GT38 cells. The EBV immediate-early gene BZLF1 mRNA and its product ZEBRA protein were induced following TPA treatment. Protein kinase C inhibitors, 1-(5-isoquinolinesulphonyl)-2, 5-dimethylpiperazine (H7) and staurosporine, inhibited the induction of p38 phosphorylation and the activation of c-Myc by TPA. The p38 inhibitor SB203580 blocked both p38 phosphorylation and ZEBRA expression by TPA. Pretreatment of GT38 cells with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine inhibited p38 phosphorylation and c-Myc activation by TPA, suggesting that NO may inhibit EBV reactivation via both p38 and c-Myc. By using short interfering RNA (siRNA) targeting either p38 or c-myc, we found that p38 or c-myc siRNA specifically inhibited expression of the respective gene and also suppressed the induction of ZEBRA and EBV early antigen. The interferon (IFN)-responsive gene expression tests ruled out the possibility that the antiviral effect of siRNA is dependent on IFN. Our present study demonstrates for the first time that either p38 or c-myc siRNA can efficiently inhibit TPA-induced EBV reactivation in GT38 cells, indicating that p38- and/or c-myc-associated signaling pathways may play critical roles in the disruption of EBV latency by TPA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号