首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the effect of ammonia toxicity on the algal succession. In this study, we investigated the ammonia toxicity to 19 algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4Cl concentration (0.06 mmol L?1) resulted in the decrease of operational PSII quantum yield by 50% compared with the control exposed to 1000 μmol photons m?2 s?1 for 1 h at pH 9.0 ± 0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3 toxicity of 18 freshwater algal species or strains were as follows: hypertrophication species > eutrophication species > mesotrophication species > oligotrophication species. The different sensitivities of NH3 toxicity in this study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were 0.08 and 0.72 mmol L?1 in 33 Chinese lakes), and the low level of NH3‐N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.  相似文献   

2.
How vertebrates evolved different traits for acid excretion to maintain body fluid pH homeostasis is largely unknown. The evolution of Na+/H+ exchanger (NHE)-mediated NH4+ excretion in fishes is reported, and the coevolution with increased ammoniagenesis and accompanying gluconeogenesis is speculated to benefit vertebrates in terms of both internal homeostasis and energy metabolism response to acidic stress. The findings provide new insights into our understanding of the possible adaptation of fishes to progressing global environmental acidification. In human kidney, titratable H+ and NH4+ comprise the two main components of net acid excretion. V-type H+-ATPase-mediated H+ excretion may have developed in stenohaline lampreys when they initially invaded freshwater from marine habitats, but this trait is lost in most fishes. Instead, increased reliance on NHE-mediated NH4+ excretion is gradually developed and intensified during fish evolution. Further investigations on more species will be needed to support the hypothesis. Also see the video abstract here https://youtu.be/vZuObtfm-34 .  相似文献   

3.
Microalgae have received much attention for the inorganic nutrient removal in tertiary treatment of domestic wastewater. Effect of different kinds of nitrogen sources on the growth and nitrogen/phosphorus removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, from a low-nutrient environment condition was studied and reported in this paper. The order of specific growth rate of the microalga with different nitrogen sources was NH4-N > urea-N > NO3-N. With nitrate or urea as nitrogen source, the microalga could grow well and remove both nitrogen and phosphorus efficiently (90% nitrogen and nearly 100% phosphorus were removed). However, with ammonium as the nitrogen source, the maximum algal density was relatively low, and the nitrogen and phosphorus removal efficiencies were as low as 31.1% and 76.4%, respectively. This was caused by the inhibitory effect of algal culture's acid pH due to H+ releasing from NH4+ during algal cultivation process.  相似文献   

4.
The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (>25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S. K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria.  相似文献   

5.
The results of a series of competition experiments between the chlorophyte Dunaliellatertiolecta (Dun) Butcher and the diatom Phaeodactylum tricornutum (TFX-1) Bohlin demonstrate conclusively that Phaeodactylum tricornutum dominates in intensive marine cultures when the pH rises above ≈ 10. This dominance results because of the diatom's unique ability among marine species to tolerate alkaline conditions. When the pH is regulated both freshwater and marine algae, once firmly established in culture at their respective pH optima, can resist invasion from competing species. Hence. pH control may be a method for maintaining species other than P. tricornutum in mass culture. When Dunaliella tertiolecta, however, is grown under even slight pH stress it becomes susceptible to invasion by Phaeodactylum tricornutum. This susceptibility to takeover by P. tricornutum increases with increasing pH. In contrast, the freshwater chlorophyte Chlorella vulgaris Beij., which also is sensitive to increasing pH, is capable of remaining dominant at any pH within its tolerance range when invaded by the pH-insensitive chlorophyte, Scenedesmus obliquus (Turp.) Kutz. Although allelopathic interactions may be responsible for the success of Chlorella vulgaris under seemingly stressful conditions, the success of Phaeodactylum tricornutum at increasingly higher pH seems to be related primarily to the alga's pH tolerance characteristics and not to any chemical interactions with competing species.  相似文献   

6.
Al stress and ammonium–nitrogen nutrition often coexist in acidic soils due to their low pH and weak nitrification ability. Rice is the most Al-resistant species among small grain cereal crops and prefers NH4 + as its major inorganic nitrogen source. This study investigates the effects of NH4 + and NO3 ? on Al toxicity and Al accumulation in rice, and thereby associates rice Al resistance with its NH4 + preference. Two rice subspecies, indica cv. Yangdao6 and japonica cv. Wuyunjing7, were used in this study. After treatment with or without Al under conditions of varying NH4 + and NO3 ? supply, rice seedlings were harvested for the determination of root elongation, callose content, biomass, Al concentration and medium pH. The results indicated that Wuyunjing7 was more Al-resistant and NH4 +-preferring than Yangdao6. NH4 + alleviated Al toxicity in two cultivars compared with NO3 ?. Both NH4 +-Al supply and pretreatment with NH4 + reduced Al accumulation in roots and root tips compared with NO3 ?. NH4 + decreased but NO3 ? increased the medium pH, and root tips accumulated more Al with a pH increase from 3.5 to 5.5. Increasing the NO3 ? concentration enhanced Al accumulation in root tips but increasing the NH4 + concentration had the opposite effect. These results show NH4 + alleviates Al toxicity for rice and reduces Al accumulation in roots compared with NO3 ?, possibly through medium pH changes and ionic competitive effects. Making use of the protective effect of NH4 +, in which the Al resistance increases, is advised for acidic soils, and the hypothesis that rice Al resistance is associated with the preferred utilization of NH4 + is suggested.  相似文献   

7.
Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH4+), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (Fv/Fm) was a sensitive indicator of NH4+ toxicity, manifested by a suppression of Fv/Fm in a dose‐dependent manner. Two chlorophytes were the least sensitive to NH4+ inhibition, at concentrations of >3,000 μmoles NH4+ · L?1, followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH4+ · L?1, followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH4+ · L?1. At non‐inhibiting concentrations of NH4+, the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO3?), whereas the other grew significantly faster on NH4+. All four diatoms tested grew faster on NH4+ compared with NO3?. We showed that in cases where growth rates were faster on NH4+ than they were on NO3?, the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH4+ dominates the total N pool and they will also not have a growth advantage when NO3? is dominant, as long as N concentrations are sufficient.  相似文献   

8.
The cytoplasmic and vacuolar pH and changes thereof in the presence of ammonia (NH4Cl) and methylamine (CH3NH3Cl) have been measured in rhizoid cells of Riccia fluitans by means of a pH-sensitive microelectrode.

On addition of 1 micromolar NH4Cl, the cytoplasmic pH of 7.2 to 7.4 drops by 0.1 to 0.2 pH units, but shifts to pH 7.8 in the presence of 50 micromolar NH4Cl or 500 micromolar CH3NH3Cl. The pH of the vacuole increases drastically from 4.5 to 5.7 with these latter concentrations. Since a NH4+/CH3NH3+ uniporter has been demonstrated in the plasmalemma of R. fluitans previously (Felle 1983 Biochim Biophys Acta 602:181-195), the concentration-dependent shifts of cytoplasmic pH are interpreted as results of two processes: first, acidification through deprotonation of the actively transported NH4+; and second, alkalinization through protonation of NH3 which is taken up to a significant extent from high external concentrations. Furthermore, it is concluded that the determination of intracellular pH by means of methylamine distribution is not a reliable method for eucaryotic systems.

  相似文献   

9.
It is cost-effective protocol to identify a functional species pool for marine bioassessment by removing redundant species from a raw dataset. The feasibility of functional species pool for discriminating water quality status was studied based on a dataset of 120 samples of ciliated protozoa. From the full 60-species dataset of the whole ciliate communities, a 35-species subset was identified as a functional species pool, the species number, abundance and biodiversity indices of which were significantly correlated with those of the full species dataset. The spatial pattern of the subset was significantly related to the changes in nutrients soluble reactive phosphates (SRP), nitrate/nitrite nitrogen (NO3-N/NO2-N) and ammonium nitrogen (NH4-N). Four indices of the taxonomic diversity (Δ), taxonomic distinctness (Δ*), average in taxonomic distinctness (Δ+) and the variation in taxonomic distinctness (Λ+) based on this small species pool were significantly correlated with the changes of nutrients NO3-N and/or (NH4-N). The paired indices Δ+ and Λ+ showed a clear decreasing trend of departure from the expected taxonomic pattern. These findings suggest that the 35-species functional species subset may be used as a feasible functional surrogate of ciliated protozoan assemblages for community-based bioassessment in marine ecosystems.  相似文献   

10.
Increased brain ammonium (NH4 +/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4 +/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4 +/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4 +/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4 +/NH3, developed within 10–20 minutes and was maintained as long as the NH4 +/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4 +/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4 +/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4 +/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.  相似文献   

11.
The growth rates of two chlorophyte macroalgae, Codium fragile and Ulva curvata, are compared in response to varied, but non-random, NH4+ enrichments (pulses). The species were chosen to contrast radically different morphologies. Pulse frequency and pulse duration were varied independently; however, an equivalent mass of NH4+ was added in each treatment. The growth rate of Codium varied neither as a function of pulse frequency nor duration; the growth rate of Ulva varied with pulse frequency, but not pulse duration. These data are combined with life form and physiological characters, and are discussed in the context of the “function form” hypothesis. From the evidence we argue that by virtue of its life form, Ulva is capable of utilizing transiently high NH4+ concentrations and is capable of high growth rates, attributes contributing to its role as a ruderal species. In contrast, Codium's life form does not allow utilization of transiently high NH4+ concentrations or high growth rates, thereby contributing to its role as a persistent species.  相似文献   

12.
We investigated the ability of Enteromorpha intestinalis (L.) Link to take up pulses of different species of nitrogen simultaneously, as this would be an important mechanism to enhance bloom ability in estuaries. Uptake rates and preference for NH4+ or NO3 following 1, 3, 6, 9, 12 or 24 h of exposure to either 15NH4NO3 or NH415NO3 were determined by disappearance of N from the medium. Differences in assimilation rates for NH4+ or NO3 were quantified by the accumulation of NH4+, NO3, and atom % 15N in the algal tissue. NH4+ concentration was reduced more quickly than water NO3 concentration. Water column NH4+ concentration after the longest time interval was reduced from 300 to 50 μM. Water NO3 was reduced from 300 to 150 μM. The presence of 15N or 14N had no effect on uptake of either NH4+ or NO3. 15N was removed from the water at an almost identical rate and magnitude as 14N. Differences in accumulation of 15NH4+ and 15NO3 in the tissue reflected disappearance from the water; 15N from NH4+ accumulated faster and reached an atom % twice that of 15N from NO3. This outcome suggested that when NH4+ and NO3 were supplied in equal concentrations, more NH4+ was taken up and assimilated. The ability to take up high concentrations of NH4+, and NO3 simultaneously is important for bloom-forming species of estuarine macroalgae subject to multiple nutrient species from various sources.  相似文献   

13.
The nitrogen (N) uptake kinetic parameters for Microcystis field assemblages collected from the San Francisco Bay Delta (Delta) in 2012 and non-toxic and toxic laboratory culture strains of M. aeruginosa were assessed. The 15N tracer technique was used to investigate uptake of ammonium (NH4+), nitrate (NO3), urea and glutamic acid over short-term incubations (0.5–1 h), and to study inhibition of NO3, NH4+ and urea uptake by NH4+, NO3 and NH4+, respectively. This study demonstrates that Delta Microcystis can utilize different forms of inorganic and organic N, with the greatest capacity for NH4+ uptake and the least for glutamic acid uptake, although N uptake did not always follow the classic Michaelis–Menten hyperbolic relationship at substrate concentrations up to 67 μmol N L−1. Current ambient N concentrations in the Delta may be at sub-saturating levels for N uptake, indicating that if N loading (especially NH4+) were to increase, Delta Microcystis assemblages have the potential for increased N uptake rates. Delta Microcystis had the highest specific affinity, α, for NH4+ and the lowest for NO3. In culture, N uptake by non-toxic and toxic M. aeruginosa strains was much higher than from the field, but followed similar N utilization trends to those in the field. Neither strain showed severe inhibition of NO3 uptake by NH4+ or inhibition of NH4+ uptake on NO3, but both strains showed some inhibition of urea uptake by NH4+.  相似文献   

14.
15.
Environmental factors that shape dynamics of benthic toxic blooms are largely unknown. In particular, for the toxic dinoflagellate Ostreopsis cf. ovata, the importance of the availability of nutrients and the contribution of the inorganic and organic pools to growth need to be quantified in marine coastal environments. The present study aimed at characterizing N-uptake of dissolved inorganic and organic sources by O. cf. ovata cells, using the 15N-labelling technique. Experiments were conducted taking into account potential interactions between nutrient uptake systems as well as variations with the diel cycle. Uptake abilities of O. cf. ovata were parameterized for ammonium (NH4+), nitrate (NO3) and N-urea, from the estimation of kinetic and inhibition parameters. In the range of 0 to 10 μmol N L−1, kinetic curves showed a clear preference pattern following the ranking NH4+ > NO3 > N-urea, where the preferential uptake of NH4+ relative to NO3 was accentuated by an inhibitory effect of NH4+ concentration on NO3 uptake capabilities. Conversely, under high nutrient concentrations, the preference for NH4+ relative to NO3 was largely reduced, probably because of the existence of a low-affinity high capacity inducible NO3 uptake system. Ability to take up nutrients in darkness could not be defined as a competitive advantage for O. cf. ovata. Species competitiveness can also be defined from nutrient uptake kinetic parameters. A strong affinity for NH4+ was observed for O. cf. ovata cells that may partly explain the success of this toxic species during the summer season in the Bay of Villefranche-sur-mer (France).  相似文献   

16.
Abstract:The lichen composition on wayside Quercus robur in the Netherlands was related to bark properties (pH, EC, NH4+, SO42−, NO3) and levels of air pollution (SO2and NH3). The pH of the bark and the susceptibility to toxic substances appear to be the two major primary factors affecting epiphytic lichen composition. These factors have independent effects on the lichen composition. Most of the so-called nitrophytic species appear to have a low sensitivity to toxic effects of SO2; their only requirement being a high bark pH. An increased bark pH appears to be the primary cause of the enormous increase in nitrophytic species and the disappearance of acidophytic species over the last decade in the Netherlands. Measurements of ambient NH3concentrations in air show that there is a nearly linear relationship between the NH3concentration and the abundance of nitrophytes on Quercus. The abundance of nitrophytes was not correlated with SO2concentrations. Most of the acidophytic species appear very sensitive to NH3since in areas with concentrations of 35 μg m−3or more, all acidophytic species have disappeared. Current methods using species diversity to estimate or monitor SO2air pollution need some modification, otherwise the air quality may be erroneously considered to be relatively good in areas with high NH3levels.  相似文献   

17.
Estimate of global yearly N assimilation by photolithotrophs are 417 Tmol N in the oceans and 167 Tmol on land and in freshwater, of which diazotrophy contributes 1 (sea) and 10 (land plus freshwater) Tmol N. More than half of the combined N assimilated (416 and 157 Tmol N year−1 in the sea and on land plus freshwater, respectively) is due to reduced N, i. e. organic N and, mainly, NH3/NH+4. Assimilation of reduced N amounts to up to 334 Tmol N year−1 in the oceans and at least 79 Tmol N year−1 in freshwater and on land. Reassimilation of NH3/NH+4 within the plant which is related to photorespiration is at least as great as primary NH3/NH+4 assimilation in the sea, and 8 times greater on land. The less frequently considered reassimilation of NH3/NH+4 that is related to phenyl-propanoid (mainly lignin) synthesis in land plants is similar (111 Tmol N) to the primary assimilation of NH3/NH+4 on land each year. Shoots of terrestrial plants have higher NH3 compensation partial pressures than most natural soils, and especially than have ocean-surface biota. However, gaseous transfer of NH3/NH+4 from land to the oceans is a negligible component of the global N cycle. Consideration of area-based N assimilation rates, diffusion distances and diffusion coefficients can rationalise why steady-state NH3/NH+4 concentrations in the sea are lower than in the soil solution. The possibility that photolithotrophs can catalyse the oxidation of NH3/NH+4, or organic N at the same redox level, to N2, N2O, NO, –NO2, NO, 2, NO2 or NO4+, is critically assessed. The tentative conclusions are that such oxidation probably occurs, but is not a major component of the global conversion of reduced N to N2 and more oxidized N species. More work is needed, especially to determine if NO generated from reduced N (conversion of arginine to citrulline plus NO) has a regulatory role in plants analogous to that established in metazoa. Relative to NO3 (or N2) as N sources, growth using NH3/NH+4 as N source has a number of potential advantages in terms of cost of other resources. Mechanistically predicted economies for NH+4 as N source are: (1) lower cost of photons used and, in transpiring plants, (2) less water lost per unit C assimilated, and (3) lower costs of catalytic Fe, Mn and Mo (unit C assimilated)−1 s−1, as well as (4) a higher maximum growth rate. The lower photon costs are frequently borne out by experimentation and the predicted higher maximum growth rates sometimes occur, while the predicted lower water costs are invariably contradicted. Few data are available for the cost of Fe, Mn or Mo as a function N source.  相似文献   

18.
SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics.  相似文献   

19.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

20.
《Biomass》1988,15(4):249-257
An experiment was conducted in the growth chamber to quantify the biomass production, N removal and N2 fixation from a synthetic medium by Chlamydomonas reinhardtii and Anabaena flos-aquae. Nitrogen was supplied at a concentration of 100 mg liter−1 of NO315N and NH4+15 (3·5 atom %), respectively. After 21 days Chlamydomonas reinhardtii removed an average of 83·8 and 78·7 mg N liter−1 as NO3 and NH4+, respectively. Averages of 0·89 and 0·71 g liter−1 (first batch), 1·63 and 0·95 g liter (second batch) algal biomass were collected from NO3 and NH4+ media, respectively. Uptake rates of 0·11 mg 15N g−1 algae day−1 from NO3 medium and 0·10 mg 15N g−1 algae day−1 from NH4+ medium were calculated. Algal cells grown in NO3 and NH4+ medium contained 71 and 65 g N kg−1 (first batch), 39 and 58 g N kg−1 (second batch), respectively. Anabaena flos-aquae produced averages of 0·58 and 0·46 g liter−1 (first batch), 0·55 and 0·48 g liter−1 (second batch) after 14 days of growth from NO3 and NH4+ media, respectively. Blue-green algal biomass contained higher N (81–98 g kg−1) than green algae. Isotope dilution method for determining N2 fixation indicated that 55% and 77% of total N of blue-green algae grown in NO3 and NH4+ media, respectively, was derived from the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号