首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Morphogenesis of the vertebrate facial skeleton depends upon inductive interactions between cephalic neural crest cells (CNCCs) and cephalic epithelia. The nasal capsule is a CNCC-derived cartilaginous structure comprising a ventral midline bar (mesethmoid) overlaid by a dorsal capsule (ectethmoid). Although Shh signalling from the anterior-most region of the endoderm (EZ-I) patterns the mesethmoid, the cues involved in ectethmoid induction are still undefined. Here, we show that ectethmoid formation depends upon Dlx5 and Dlx6 expression in a restricted ectodermal territory of the anterior neural folds, which we name NF-ZA. In both chick and mouse neurulas, Dlx5 and Dlx6 expression is mostly restricted to NF-ZA. Simultaneous Dlx5 and Dlx6 inactivation in the mouse precludes ectethmoid formation, while the mesethmoid is still present. Consistently, siRNA-mediated downregulation of Dlx5 and Dlx6 in the cephalic region of the early avian neurula specifically prevents ectethmoid formation, whereas other CNCC-derived structures, including the mesethmoid, are not affected. Similarly, NF-ZA surgical removal in chick neurulas averts ectethmoid development, whereas grafting a supernumerary NF-ZA results in an ectopic ectethmoid. Simultaneous ablation or grafting of both NF-ZA and EZ-I result, respectively, in the absence or duplication of both dorsal and ventral nasal capsule components. The present work shows that early ectodermal and endodermal signals instruct different contingents of CNCCs to form the ectethmoid and the mesethmoid, which then assemble to form a complete nasal capsule.  相似文献   

6.
The apical ectodermal ridge (AER) is a specialized ectodermal region essential for limb outgrowth. Msx2 expression patterns in limb development strongly suggest an important role for Msx2 in the AER. Our previous studies identified a 348-bp fragment of the chicken Msx2 gene with AER enhancer activity. In this study, the functions of four potential homeodomain binding TAAT sites in this enhancer were studied using transgenic mice and in vitro protein-DNA interactions. Transgenic studies indicate that the four TAAT sites are not redundant and that only the B-TAAT site is critical for AER enhancer activity. The expression patterns of Msx2 and Dlx5 genes in the AER suggest that they might be involved in the regulation of Msx2. In support of this hypothesis, we found that Msx2 and Dlx5 can bind to the B-TAAT site as well as to a fragment containing the D- and E-TAAT sites in the Msx2 AER enhancer sequences. (c)2002 Elsevier Science (USA).  相似文献   

7.
8.
9.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.

Background

Random monoallelic expression defines an unusual class of genes displaying random choice for expression between the maternal and paternal alleles. Once established, the allele-specific expression pattern is stably maintained and mitotically inherited. Examples of random monoallelic genes include those found on the X-chromosome and a subset of autosomal genes, which have been most extensively studied in humans. Here, we report a genome-wide analysis of random monoallelic expression in the mouse. We used high density mouse genome polymorphism mapping arrays to assess allele-specific expression in clonal cell lines derived from heterozygous mouse strains.

Results

Over 1,300 autosomal genes were assessed for allele-specific expression, and greater than 10% of them showed random monoallelic expression. When comparing mouse and human, the number of autosomal orthologs demonstrating random monoallelic expression in both organisms was greater than would be expected by chance. Random monoallelic expression on the mouse autosomes is broadly similar to that in human cells: it is widespread throughout the genome, lacks chromosome-wide coordination, and varies between cell types. However, for some mouse genes, there appears to be skewing, in some ways resembling skewed X-inactivation, wherein one allele is more frequently active.

Conclusions

These data suggest that autosomal random monoallelic expression was present at least as far back as the last common ancestor of rodents and primates. Random monoallelic expression can lead to phenotypic variation beyond the phenotypic variation dictated by genotypic variation. Thus, it is important to take into account random monoallelic expression when examining genotype-phenotype correlation.  相似文献   

12.

Objective

Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated.

Material and Methods

We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects.

Results

We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects.

Conclusions

The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.  相似文献   

13.
The expression of the Dlx homeobox genes is closely associated with neurons that express gamma-aminobutyric acid (GABA) in the embryonic rostral forebrain. To test whether the Dlx genes are sufficient to induce some aspects of the phenotype of GABAergic neurons, we adapted the electroporation method to ectopically express DLX proteins in slice cultures of the mouse embryonic cerebral cortex. This approach showed that ectopic expression of Dlx2 and Dlx5 induced the expression of glutamic acid decarboxylases (GADs), the enzymes that synthesize GABA. We also used this method to show cross-regulation between different Dlx family members. We find that Dlx2 can induce Dlx5 expression, and that Dlx1, Dlx2 and Dlx5 can induce expression from a Dlx5/6-lacZ enhancer/"reporter construct.  相似文献   

14.
Chang Q  Khare G  Dani V  Nelson S  Jaenisch R 《Neuron》2006,49(3):341-348
Mutations in the MECP2 gene cause Rett syndrome (RTT). Bdnf is a MeCP2 target gene; however, its role in RTT pathogenesis is unknown. We examined Bdnf conditional mutant mice for RTT-relevant pathologies and observed that loss of BDNF caused smaller brain size, smaller CA2 neurons, smaller glomerulus size, and a characteristic hindlimb-clasping phenotype. BDNF protein level was reduced in Mecp2 mutant mice, and deletion of Bdnf in Mecp2 mutants caused an earlier onset of RTT-like symptoms. To assess whether this interaction was functional and potentially therapeutically relevant, we increased BDNF expression in the Mecp2 mutant brain with a conditional Bdnf transgene. BDNF overexpression extended the lifespan, rescued a locomotor defect, and reversed an electrophysiological deficit observed in Mecp2 mutants. Our results provide in vivo evidence for a functional interaction between Mecp2 and Bdnf and demonstrate the physiological significance of altered BDNF expression/signaling in RTT disease progression.  相似文献   

15.
16.
17.
18.
Two major isoforms of the Runx2 gene are expressed by alternative promoter usage: Runx2 type I (Runx2-I) is derived from the proximal promoter (P2), and Runx2 type II (Runx2-II) is produced by the distal promoter (P1). Our previous results indicate that Dlx5 mediates BMP-2-induced Runx2 expression and osteoblast differentiation (Lee, M.-H., Kim, Y-J., Kim, H-J., Park, H-D., Kang, A-R., Kyung, H.-M., Sung, J-H., Wozney, J. M., Kim, H-J., and Ryoo, H-M. (2003) J. Biol. Chem. 278, 34387-34394). However, little is known of the molecular mechanisms by which Dlx5 up-regulates Runx2 expression in BMP-2 signaling. Here, Runx2-II expression was found to be specifically stimulated by BMP-2 treatment or by Dlx5 overexpression. In addition, BMP-2, Dlx5, and Runx2-II were found to be expressed in osteogenic fronts and parietal bones of the developing cranial vault and Runx2-I and Msx2 in the sutural mesenchyme. Furthermore, Runx2 P1 promoter activity was strongly stimulated by Dlx5 overexpression, whereas Runx2 P2 promoter activity was not. Runx2 P1 promoter deletion analysis indicated that the Dlx5-specific response is due to sequences between -756 and -342 bp of the P1 promoter, where three Dlx5-response elements are located. Dlx5 responsiveness to these elements was confirmed by gel mobility shift assay and site-directed mutagenesis. Moreover, Msx2 specifically suppressed the Runx2 P1 promoter, and the responsible region overlaps with that recognized by Dlx5. In summary, Dlx5 specifically transactivates the Runx2 P1 promoter, and its action on the P1 promoter is antagonized by Msx2.  相似文献   

19.
Epigenetic modifications to DNA and chromatin programme important genome functions including gene expression, chromosomal architecture and stability, and the maintenance of developmental states. Recent findings further implicate epigenetic modifications in the control of allelic choice in the immune system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号