首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the role of outward K(+) currents in the acinar cells underlying secretion from Brunner's glands in guinea pig duodenum. Intracellular recordings were made from single acinar cells in intact acini in in vitro submucosal preparations, and videomicroscopy was employed in the same preparation to correlate these measures with secretion. Mean resting membrane potential was -74 mV and was depolarized by high external K(+) (20 mM) and the K(+) channel blockers 4-aminopyridine (4-AP), quinine, and clotrimazole. The cholinergic agonist carbachol (60-2,000 nM; EC(50) = 200 nM) caused a concentration-dependent initial hyperpolarization of the membrane and an associated decrease in input resistance. This hyperpolarization was significantly decreased by 20 mM external K(+) or membrane hyperpolarization and increased by 1 mM external K(+) or membrane depolarization. It was blocked by the K(+) channel blockers tetraethylammonium (TEA), 4-AP, quinine, and clotrimazole but not iberiotoxin. When videomicroscopy was employed to measure dilation of acinar lumen in the same preparation, carbachol-evoked dilations were altered in a parallel fashion when external K(+) was altered. The dilations were also blocked by the K(+) channel blockers TEA, 4-AP, quinine, and clotrimazole but not iberiotoxin. These findings suggest that activation of outward K(+) currents is fundamental to the initiation of secretion from these glands, consistent with the model of K(+) efflux from the basolateral membrane providing the driving force for secretion. The pharmacological profile suggests that these K(+) channels belong to the intermediate conductance group.  相似文献   

2.
In the present study, we compare changes in host cell plasma membrane potential (V(m)), K(+) fluxes, and NO production during K(+) channel blockade with those changes that occur during infection with Leishmania major. Infection of P388D.1 cells with L. major promastigotes or treatment with K(+) channel blockers (either 1mM 4-AP, 10mM TEA, or 200 microM quinine) suppressed NO production. Inhibition of NO production correlated with depolarization of the P388D.1 cell V(m). Infection of P388D.1 cells with L. major increased the unidirectional influx of rubidium (86Rb), a tracer for K(+) flux, that was comparable to that induced by K(+) channel blockade by 1mM 4-AP. The similar effects of K(+) channel blockers and L. major on NO production, K(+) influx, and V(m) suggest that K(+) channel activity and the maintenance of V(m) is important for NO production in these cells. We suggest that intracellular parasites employ a strategy to inhibit NO production by disrupting V(m) during the invasion/infection process by altering host cell K(+) channel activity.  相似文献   

3.
The effects of blockers of voltage-gated potassium channels, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), on inhibitory postsynaptic currents (IPSC) evoked by local electrical stimulation of zones of unitary synaptic terminals on hippocampal neurons were studied using a voltage-clamp technique under conditions of low density cell culture. At activation of the transmitter release in the absence of action potentials (when the terminals are in a tetrodotoxin-containing medium), external application of 5 mM 4-AP reversibly increased the averaged IPSC amplitude by 90±30%, while a similar effect of 10 mM TEA reached only 20±7%. The amplitudes of individual evoked IPSC varied between 10 and more than 150 pA. Amplitude histograms of IPSC in all studied neurons (n=14) were of a polymodal nature and could not described by a Gaussian law. An increase in the averaged IPSC amplitude under the influence of potassium channel blockers cannot be described as resulting only from modification of the number of trials without transmitter release (blank events). The mechanism of potassium channel blocker-induced facilitation of IPSC evoked by single synaptic terminals is discussed.  相似文献   

4.
The ionic basis underlying the maintenance of myogenic tone of lower esophageal sphincter circular muscle (LES) was investigated in opossum with the use of standard isometric tension and conventional intracellular microelectrode recordings in vitro. In tension recording studies, nifedipine (1 microM) reduced basal tone to 27.7 +/- 3.8% of control. The K(+) channel blockers tetraethylammonium (TEA, 2 mM), charybdotoxin (100 nM), and 4-aminopyridine (4-AP, 2 mM) enhanced resting tone, whereas apamin and glibenclamide were without affect. Cl(-) channel blockers DIDS (500 microM) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (500 microM), as well as niflumic acid (0.1-300 microM), decreased basal tone, but tamoxifen was without effect. Intracellular microelectrode recordings revealed ongoing, spontaneous, spike-like action potentials (APs). Nifedipine abolished APs and depolarized resting membrane potential (RMP). Both TEA and 4-AP significantly depolarized RMP and augmented APs, whereas niflumic acid dose-dependently hyperpolarized RMP and abolished APs. These data suggest that, in the opossum, basal tone is associated with continuous APs and that K(+) and Ca(2+)-activated Cl(-) channels have important opposing roles in the genesis of LES tone.  相似文献   

5.
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization. More surprisingly, slow inactivation of the Kv1 Shaker K(+) channel (Shaker B Delta 6--46) also has a U-shaped voltage dependence for 10-s depolarizations. The time and voltage dependence of recovery from inactivation reveals two distinct components for Shaker. Strong depolarizations favor inactivation that is reduced by K(o)(+) or by partial block by TEA(o), as previously reported for slow inactivation of Shaker. However, depolarizations near 0 mV favor inactivation that recovers rapidly, with strong voltage dependence (as for Kv2.1 and 3.1). The fraction of channels that recover rapidly is increased in TEA(o) or high K(o)(+). We introduce the term U-type inactivation for the mechanism that is dominant in Kv2.1 and Kv3.1. U-type inactivation also makes a major but previously unrecognized contribution to slow inactivation of Shaker.  相似文献   

6.
Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K(+) current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca(2+) and was sensitive to Ca(2+) channel blockade. Blockade of K(+) channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of -36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K(+) current (I(KH)) that was hypoxia, TEA, and 4-AP sensitive. I(KH) was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was -32 mV, suggesting that I(KH) may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv(1.5), Kv(2.1), and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I(KH) would contribute to hypoxic-induced contraction in PVSMC.  相似文献   

7.
The present study aimed to investigate the potassium currents and further explore the role of potassium channels in drug response of gastric cancer cells. By patch-clamp technique, potassium currents of human gastric cancer cell SGC7901 were recorded in the mode of voltage clamp. Both 4-aminopyridine (4-AP) and tetraethylammonium (TEA) could almost completely block this current. The chemotherapeutic drugs, adriamycin or 5-fluorouracil could significantly increase the K(+) current density on SGC7901 cells in a dose-dependent manner. 4-AP or TEA was found to restrain adriamycin-induced apoptosis and enhance multidrug-resistant phenotype of SGC7901 cells. Up-regulation of Kv1.5, which has been found widely expressed in gastric cancer cells including SGC7901, increased the K(+) current density and sensitivity of SGC7901 cells to multiple chemotherapeutic drugs, whereas down-regulation of Kv1.5 enhanced the drug-resistant phenotype of SGC7901 cells. In conclusion, potassium channels may exert regulatory effects on multidrug resistance by regulating drug-induced apoptosis in gastric cancer cells.  相似文献   

8.
K(+) currents in cultured Drosophila larval neurons have been classified into four categories according to their inactivation time constants, relative amplitude, and response to K(+) channel blockers 4-AP and tetraethylammonium. The percentage (65%) of neurons displaying K(+) currents which were reduced to 30% in amplitude by 5 mM cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP in both Drosophila memory mutants rutabaga (rut) and amnesiac (amn) was significantly larger than that (50%) in wild type. This initial characterization provides evidence for altered K(+) currents in both rut and amn mutants. Arachidonic acid, a specifical inhibitor of Kv4 family (shal) K(+) channels, was found to inhibit K(+) currents in cultured Drosophila neurons, suggesting the presence of shal channels in these neurons.  相似文献   

9.
Mastocytoma P815 tumor cells subjected to low temperature (O degrees C/l h) and shifted to 22 degrees or 37 degrees C undergo morphological, physiological and biochemical changes which are analogous to those induced by immune effector cells, i.e., changes in cell-surface morphology and membrane permeability, elevated O2 consumption rates and nuclear DNA fragmentation [18-21]. Utilizing this low-temperature shift method for the induction of cell injury, we investigated the possible role of K+ channels in this process. Results show that the two classical K+ channel blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), inhibited the low temperature-induced cell-surface membrane vesicle shedding as well as the nuclear DNA-fragmentation process. These results indicate that K+ channel function is required for tumor-cell injury as manifested by nuclear DNA fragmentation and cell-surface membrane vesicle (MV) shedding.  相似文献   

10.
Voltage-gated potassium channels are proteins composed of four subunits consisting of six membrane-spanning segments S1-S6, with S4 as the voltage sensor. The region between S5 and S6 forms the potassium-selective ion-conducting central α-pore. Recent studies showed that mutations in the voltage sensor of the Shaker channel could disclose another ion permeation pathway through the voltage-sensing domain (S1-S4) of the channel, the ω-pore. In our studies we used the voltage-gated hKv1.3 channel, and the insertion of a cysteine at position V388C (Shaker position 438) generated a current through the α-pore in high potassium outside and an inward current at hyperpolarizing potentials carried by different cations like Na(+), Li(+), Cs(+), and NH(4)(+). The observed inward current looked similar to the ω-current described for the R1C/S Shaker mutant channel and was not affected by some pore blockers like charybdotoxin and tetraethylammonium but was inhibited by a phenylalkylamine blocker (verapamil) that acts from the intracellular side. Therefore, we hypothesize that the hKv1.3_V388C mutation in the P-region generated a channel with two ion-conducting pathways. One, the α-pore allowing K(+) flux in the presence of K(+), and the second pathway, the σ-pore, functionally similar but physically distinct from the ω-pathway. The entry of this new pathway (σ-pore) is presumably located at the backside of Y395 (Shaker position 445), proceeds parallel to the α-pore in the S6-S6 interface gap, ending between S5 and S6 at the intracellular side of one α-subunit, and is blocked by verapamil.  相似文献   

11.
Copper tolerance among Arabidopsis ecotypes is inversely correlated with long-term K(+) leakage and positively correlated with short-term K(+) leakage (A. Murphy, L. Taiz [1997] New Phytol 136: 211-222). To probe the mechanism of the early phase of K(+) efflux, we tested various channel blockers on copper and peroxide-induced K(+) efflux from seedling roots. The K(+) channel blockers tetraethyl ammonium chloride and 4-aminopyridine (4-AP) both inhibited short-term copper-induced K(+) efflux. In contrast, peroxide-induced K(+) efflux was insensitive to both tetraethyl ammonium chloride and 4-AP. Copper-induced lipid peroxidation exhibited a lag time of 4 h, while peroxide-induced lipid peroxidation began immediately. These results suggest that short-term copper-induced K(+) efflux is mediated by channels, while peroxide-induced K(+) efflux represents leakage through nonspecific lesions in the lipid bilayer. Tracer studies with (86)Rb(+) confirmed that copper promotes K(+) efflux rather than inhibiting K(+) uptake. Short-term K(+) release is electroneutral, since electrophysiological measurements indicated that copper does not cause membrane depolarization. Short-term K(+) efflux was accompanied by citrate release, and copper increased total citrate levels. Since citrate efflux was blocked by 4-AP, K(+) appears to serve as a counterion during copper-induced citrate efflux. As copper but not aluminum selectively induces citrate production and release, it is proposed that copper may inhibit a cytosolic form of aconitase.  相似文献   

12.
Maintaining placental syncytiotrophoblast, a specialized multinucleated transport epithelium, is essential for normal human pregnancy. Syncytiotrophoblast continuously renews through differentiation and fusion of cytotrophoblast cells, under paracrine control by syncytiotrophoblast production of human chorionic gonadotropin (hCG). We hypothesized that K(+) channels participate in trophoblast syncytialization and hCG secretion in vitro. Two models of normal-term placenta were used: 1) isolated cytotrophoblast cells and 2) villous tissue in explant culture. Cells and explants were treated with K(+) channel modulators from 18 h, and day 3, onward, respectively. Culture medium was analyzed for hCG, to assess secretion, as well as for lactate dehydrogenase (LDH), to indicate cell/tissue integrity. hCG was also measured in cytotrophoblast cell lysates, indicating cellular production. Syncytialization of cytotrophoblast cells was assessed by immunofluorescent staining of desmosomes and nuclei. Over 18-66 h, mononucleate cells fused to form multinucleated syncytia, accompanied by a 28-fold rise in hCG secretion. 1 mM Ba(2+) stimulated cytotrophoblast cell hCG secretion at 66 h compared with control, whereas 5 mM tetraethylammonium (TEA) inhibited hCG secretion by >90%. 0.1-1 mM 4-aminopyridine (4-AP) reduced cytotrophoblast cell hCG secretion and elevated cellular hCG; without altering cellular integrity or syncytialization. In villous explants, hCG secretion was not altered by 1 mM Ba(2+) but inhibited by 5 mM 4-AP and 5/10 mM TEA, without affecting LDH release. Anandamide, pinacidil, and cromakalim were without effect in either model. In conclusion, 4-AP- and TEA-sensitive K(+) channels (e.g., voltage-gated and Ca(2+)-activated) regulate trophoblast hCG secretion in culture. If these K(+) channels participate in hCG secretion in situ, they may regulate trophoblast turnover in health and disease.  相似文献   

13.
In the Kv2.1 potassium channel, binding of K(+) to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na(+) current, K(+) interacts with the TEA modulation site at concentrations 相似文献   

14.
In the pregnant rat, spontaneous electrical activity of circular muscle (CM) changes from single, plateau-type action potentials at early and mid-term to repetitive spike trains at term. To examine mechanisms underlying the plateau, we studied the effects of potassium channel blockers tetraethylammonium (TEA) and 4-aminopyridine (4-AP) on membrane potentials in CM from rats on gestation Days 14, 15, 16, 21 (term). Apparent membrane conductance was measured at rest and during the plateau in Day 14 muscles with and without TEA. 4-AP depolarized the resting membrane on all gestation days. Therefore, a direct action of 4-AP on plateau configuration could not be separated from an indirect effect of depolarization. TEA did not affect the resting potential but increased action potential size and depolarization rate on all gestation days. On Day 16, TEA reduced plateau amplitude, unmasking small, repetitive depolarizations. D-600 decreased plateau amplitude and duration and attenuated these effects of TEA. Plateau conductance increased initially then decreased before membrane repolarization. Membrane conductance and outward rectification during the plateau were reduced by TEA. The plateau potential may result from an outwardly rectifying TEA-sensitive current combined with a slow inward current, the plateau magnitude being determined by the relative intensity of each current.  相似文献   

15.
Two types of potassium current in rabbit cultured Schwann cells   总被引:1,自引:0,他引:1  
Voltage-gated outward currents were studied in rabbit cultured Schwann cells with the 'whole-cell' configuration of the patch-clamp method. Four components of such currents were identified. The first, which was abolished by replacement of the external chloride ions by the large impermeant anion gluconate, was identified as a chloride current. The second and third were identified as potassium currents. One type of potassium current was reduced substantially by either 4-aminopyridine (4-AP) or tetraethylammonium ion (TEA). Its sensitivity to blocking by 4-AP was highly voltage-dependent: the equilibrium dissociation constant (K) was threefold greater when measured at +10 mV than when measured at -40 mV (where it was about 80 microM). The second type of potassium current was relatively insensitive to 4-AP, but was blocked by TEA. The TEA sensitivity of the two types of potassium currents was similar and displayed no obvious voltage-dependence (K approximately 200 microM). The fourth component of current was not reduced by 4-AP or TEA at concentrations less than 10 mM. Whether or not this last component is a potassium current is unclear.  相似文献   

16.
The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovascular deconditioning effect due to short- and medium-term microgravity. K(+) channel function of VSMCs was studied by pharmacological methods and patch-clamp techniques. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated K(+) (K(v)) currents were determined by subtracting the current recorded after applications of 1 mM tetraethylammonium (TEA) and 1 mM TEA + 3 mM 4-aminopyridine (4-AP), respectively, from that of before. For cerebral vessels, the normalized contractility of basilar arterial rings to TEA, a BK(Ca) blocker, and 4-AP, a K(v) blocker, was significantly decreased after 1- and 4-wk simulated microgravity, respectively. VSMCs isolated from the middle cerebral artery branches of suspended rats had a more depolarized membrane potential (E(m)) and a smaller K(+) current density compared with those of control rats. Furthermore, the reduced total current density was due to smaller BK(Ca) and smaller K(v) current density in cerebral VSMCs after 1- and 4-wk tail suspension, respectively. For hindquarter vessels, VSMCs isolated from second- to sixth-order small mesenteric arteries of both 1- and 4-wk suspended rats had a more negative E(m) and larger K(+) current densities for total, BK(Ca), and K(v) currents. These results indicate that differential activation of K(+) channels occur in cerebral and hindquarter VSMCs during short- and medium-term simulated microgravity. It is further suggested that different profiles of channel remodeling might occur in VSMCs as one of the important underlying cellular mechanisms to mediate and modulate differential vascular adaptation during microgravity.  相似文献   

17.
The effects of K+ channel blockers, such as 4-aminoprydine (4-AP) and tetraethylammonium (TEA), on the excitatory responses of rapidly adapting pulmonary stretch receptor (RAR) activity to hyperinflation (inflation volume=3 tidal volumes) were investigated in anesthetized, artificially ventilated rabbits after vagus nerve section. The changes in the RAR adaptation index (AI) produced by constant-pressure (approximately 30 cmH2O, 29.7+/-0.2 cmH2O) inflation of the lungs were also examined before and after pretreatment with 4-AP and TEA. The administration of 4-AP (0.7 and 2.0 mg/kg) potentiated hyperinflation-induced RAR stimulation in a dose-dependent manner. During hyperinflation after 2.0 mg/kg 4-AP administration the discharge of RARs showed a relatively regular firing pattern in both inflation and deflation phases. The RAR AI values during constant-pressure inflation of the lungs were significantly reduced by 4-AP treatment (2.0 mg/kg). TEA treatment (2.0 and 7.0 mg/kg) did not significantly alter either the excitatory response of RAR activity to hyperinflation or the RAR AI values seen during constant-pressure inflation of the lungs. These results suggest that during hyperinflation in in vivo experiments on rabbits, RARs may be maintained at a lower activity by opening the 4-AP-sensitive K+ channels on the receptor endings, which can determine accommodation of the receptor discharge.  相似文献   

18.
The effects of a variety of K+ channel blockers on current flow through single serotonin-sensitive K+ channels (the S channels) of Aplysia sensory neurons were studied using the patch-clamp technique. Tetraethylammonium (TEA), 4-aminopyridine (4-AP), and Co2+ and Ba2+ were first applied to the external membrane surface using cell-free outside-out patches. At concentrations up to 10 mM, these agents had little or no effect on single S-channel currents. At higher concentrations, external TEA acted as a fast open-channel blocker, reducing the single-channel current amplitude according to a simple one-to-one binding scheme with an apparent Kd of 90 mM. Blockage by external TEA is voltage independent. Internal TEA also acts as an open-channel blocker, with an apparent Kd of approximately 40 mM and a relatively weak voltage dependence, corresponding to an apparent electrical distance to the internal TEA-binding site of 0.1. Both internal and external TEA block the open channel selectively, with an affinity that is 10-100-fold greater than the affinity for the closed channel. Internal Ba2+ acts as a slow channel blocker, producing long closures of the channel, and binding with an apparent Kd of approximately 25-30 microM. These results show that single S-channel currents share a similar pharmacological profile with the macroscopic S current previously characterized with voltage clamp. On the basis of these results, a structural model for S-channel opening is proposed.  相似文献   

19.
1. Neurons with a receptor responded to FMRFamide (Phe-Met-Arg-Phe-NH2) were identified in the ganglion of Aplysia kurodai. Ionic mechanism and channel gating system of the FMRFamide-induced responses were investigated by current clamp and voltage clamp methods. 2. The reversal potential of FMRFamide-induced response exactly coincided with the equilibrium potential for K+. This proved that the response was produced by a specific increase in membrane permeability toward K+, exclusively. 3. The FMRFamide-induced response was not affected by the inhibitors for Ca2(+)-activated K(+)-current, i.e., TEA, apamin, and EGTA. This excluded a possibility that FMRFamide-activated K(+)-channel is a Ca2(+)-activated K(+)-channel. 4. Intracellular injection of pertussis-toxin (PTX) caused no change in either resting potential or conductance, but it irreversibly blocked the FMRFamide-induced outward current within 30 min. Similarly applied cholera toxin (CTX) showed no effect on the FMRF-amide response. 5. Intracellular application of guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) caused no effect on either resting potential or conductance, but it blocked the FMRFamide-induced K(+)-current within 3 min. 6. Intracellular application of guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S) alone induced a slowly developing, irreversible outward current associated with an increase in membrane conductance. However, repetitive applications of FMRFamide immediately after the start of GTP gamma S application markedly facilitated the effect of GTP gamma S on the resting membrane. 7. Intracellular application of either adenylate cyclase inhibitor (3'-deoxyadenosine) or A-kinase inhibitor (H-8) did not affect the FMRFamide-induced response. 8. It was concluded that the FMRFamide-induced K(+)-current is mediated by PTX-sensitive GTP-binding protein Gi, Go or Gk. It was also suggested that the FMRFamide-induced response is produced independently of the changes in intracellular Ca2+ or cyclic AMP.  相似文献   

20.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号