首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertional mutagenesis was used in Chlamydomonas reinhardtii to isolate original mutants hypersensitive to multiple drugs and physical agents. Out of 5200 transformants analyzed, 13 mutants belonging to seven phenotypic classes were isolated. Five were exclusively sensitive to cadmium and represented two loci. The other mutants were pleiotropic and presented a cross sensitivity to several (2--6) of the following agents: cadmium, copper, lead, paraquat, hydrogen peroxide, UVC and light. In all mutants analyzed, the hypersensitive phenotype was most probably due to a single mutational event. The sensitivity of several pleiotropic mutants to a broad range of physical and chemical agents suggests that the disrupted genes are involved in multiple stress responses.  相似文献   

2.
3.
4.
Transient adaptation to mild oxidative stress was induced in human osteosarcoma cells chronically grown in sub-toxic concentrations of diethylmaleate (DEM), a glutathione (GSH) depleting agent. The adapted cells, compared to untreated cells, contain increased concentrations of GSH (4-6 fold) which, upon DEM withdrawal from the culture medium, return to normal values and are more resistant to subsequent oxidizing stress induced either by toxic concentrations of the same agent or by (H2O2) treatment. To investigate the molecular mechanisms involved in the adaptive response to oxidative stress, we analyzed the gene expression profiles of DEM-adapted cells by differential display. The expression of adaptive response to oxidative stress (AROS)-29 gene, coding for a transmembrane protein of unknown function, as well as of some known genes involved in energy metabolism, protein folding and membrane traffic is up-regulated in adapted cells. The increased resistance to both DNA damage and apoptosis, in cells stably overexpressing AROS-29, demonstrated its functional role in the protection against oxidative stress.  相似文献   

5.
6.
The synthesis of phytochelatins (PCs) in a marine alga, Dunalliela tertiolecta, is strongly induced by Zn. Pretreatment of the cells with Zn enhances the tolerance toward toxic heavy metals such as Cd, Hg, Cu, Pb, and arsenate. Moreover, the pretreatment also increases the tolerance toward oxidative stress caused by hydrogen peroxide or paraquat. In vitro analysis shows that PC is a stronger scavenger of hydrogen peroxide and superoxide radical than glutathione. These results suggest that PCs inducibly synthesized by Zn treatment could play a role not only in detoxification of heavy metals but also in mitigation of oxidative stress.  相似文献   

7.
Potato is a species commonly cultivated in temperate areas where the growing season may be interrupted by frosts, resulting in loss of yield. Cultivated potato, Solanum tuberosum, is freezing sensitive, but it has several freezing-tolerant wild potato relatives, one of which is S. commersonii. Our study was aimed to resolve the relationship between enhanced freezing tolerance, acclimation capacity and capacity to tolerate active oxygen species. To be able to characterize freezing tolerant ideotypes, a potato population (S1), which segregates in freezing tolerance, acclimation capacity and capacity to tolerate superoxide radicals, was produced by selfing a somatic hybrid between a freezing-tolerant Solanum commersonii (LT50=-4.6°C) and -sensitive S. tuberosum (LT50=-3.0°C). The distribution of non-acclimated freezing tolerance (NA-freezing tolerance) of the S1 population varied between the parental lines and we were able to identify genotypes, having significantly high or low NA-freezing tolerance. When a population of 25 genotypes was tested both for NA-freezing and paraquat (PQ) tolerance, no correlation was found between these two traits (R = 0.02). However, the most NA-freezing tolerant genotypes were also among the most PQ tolerant plants. Simultaneously, one of the NA-freezing sensitive genotypes (2022) (LT50=-3.0°C) was observed to be PQ tolerant. These conflicting results may reflect a significant, but not obligatory, role of superoxide scavenging mechanisms in the NA-freezing tolerance of S. commersonii. The freezing tolerance after cold acclimation (CA-freezing tolerance) and the acclimation capacity (AC) was measured after acclimation for 7 days at 4/2°C. Lack of correlation between NA-freezing tolerance and AC (R =-0.05) in the S1 population points to independent genetic control of NA-freezing tolerance and AC in Solanum sp. Increased freezing tolerance after cold acclimation was clearly related to PQ tolerance of all S1 genotypes, especially those having good acclimation capacity. The rapid loss of improved PQ tolerance under deacclimation conditions confirmed the close relationship between the process of cold acclimation and enhanced PQ tolerance. Here, we report an increased PQ tolerance in cold-acclimated plants compared to non-acclimated controls. However, we concluded that high PQ tolerance is not a good indicator of actual freezing tolerance and should not be used as a selectable marker for the identification of a freezing-tolerant genotype.  相似文献   

8.
The phytohormone auxin plays a critical role in plant growth and development, and its spatial distribution largely depends on the polar localization of the PIN‐FORMED (PIN) auxin efflux carrier family members. In this study, we identify a putative auxin efflux carrier gene in rice, OsPIN3t, which acts in auxin polar transport but is also involved in the drought stress response in rice. We show that OsPIN3t–GFP fusion proteins are localized in plasma membranes, and this subcellular localization changes under 1‐N‐naphthylphthalamic acid (NPA) treatment. The tissue‐specific expression patterns of OsPIN3t were also investigated using a β‐glucuronidase (GUS) reporter, which showed that OsPIN3t was mainly expressed in vascular tissue. The GUS activity in OsPIN3tpro::GUS plants increased by NAA treatment and decreased by NPA treatment. Moreover, knockdown of OsPIN3t caused crown root abnormalities in the seedling stage that could be phenocopied by treatment of wild‐type plants with NPA, which indicated that OsPIN3t is involved in the control of polar auxin transport. Overexpression of OsPIN3t led to improved drought tolerance, and GUS activity significantly increased when OsPIN3tpro::GUS plants were subjected to 20% polyethylene glycol stress. Taken together, these results suggest that OsPIN3t is involved in auxin transport and the drought stress response, which suggests that a polar auxin transport pathway is involved in the regulation of the response to water stress in plants.  相似文献   

9.
目的:观察剧烈运动导致的胰岛素敏感性改变及其氧化应激因素。方法:健康青年人服用维生素C和芦丁后作5km/20min越野运动,测试运动前后血清SOD-1、血糖、血清胰岛素、胰岛素敏感性指数,与不服用药物运动前后以上指标相对照。结果:运动后血糖无明显变化,血清胰岛素升高(P<0.01),血清SOD-1及胰岛素敏感指数较之运动前下降(P<0.01);服用药物者在运动后血清SOD-1及胰岛素敏感性指数较不服用药物者升高(P<0.05)。结论:剧烈运动后短时间内胰岛素敏感性下降,运动中过度氧化是胰岛素敏感性下降重要原因。  相似文献   

10.
14-3-3 proteins and the response to abiotic and biotic stress   总被引:1,自引:0,他引:1  
14-3-3 proteins function as regulators of a wide range of target proteins in all eukaryotes by effecting direct protein-protein interactions. Primarily, interactions between 14-3-3 proteins and their targets are mediated by phosphorylation at specific sites on the target protein. Hence, interactions with 14-3-3s are subject to environmental control through signalling pathways which impact on 14-3-3 binding sites. Because 14-3-3 proteins regulate the activities of many proteins involved in signal transduction, there are multiple levels at which 14-3-3 proteins may play roles in stress responses in higher plants. In this article, we review evidence which implicates 14-3-3 proteins in responses to environmental, metabolic and nutritional stresses, as well as in defence responses to wounding and pathogen attack. This evidence includes stress-inducible changes in 14-3-3 gene expression, interactions between 14-3-3 proteins and signalling proteins and interactions between 14-3-3 proteins and proteins with defensive functions.  相似文献   

11.
The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ‘clean’ water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal‐selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal‐selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.  相似文献   

12.
Sumoylation is a posttranslational regulatory process in higher eukaryotes modifying substrate proteins through conjugation of small ubiquitin‐related modifiers (SUMOs). Sumoylation modulates protein stability, subcellular localization and activity; thus, it regulates most cellular functions including response to environmental stress in plants. To study the feasibility of manipulating SUMO E3 ligase, one of the important components in the sumoylation pathway in transgenic (TG) crop plants for improving overall plant performance under adverse environmental conditions, we have analysed TG creeping bentgrass (Agrostis stolonifera L.) plants constitutively expressing OsSIZ1, a rice SUMO E3 ligase. Overexpression of OsSIZ1 led to increased photosynthesis and overall plant growth. When subjected to water deficiency and heat stress, OsSIZ1 plants exhibited drastically enhanced performance associated with more robust root growth, higher water retention and cell membrane integrity than wild‐type (WT) controls. OsSIZ1 plants also displayed significantly better growth than WT controls under phosphate‐starvation conditions, which was associated with a higher uptake of phosphate (Pi) and other minerals, such as potassium and zinc. Further analysis revealed that overexpression of OsSIZ1 enhanced stress‐induced SUMO conjugation to substrate in TG plants, which was associated with modified expression of stress‐related genes. This strongly supports a role sumoylation plays in regulating multiple molecular pathways involved in plant stress response, establishing a direct link between sumoylation and plant response to environmental adversities. Our results demonstrate the great potential of genetic manipulation of sumoylation process in TG crop species for improved resistance to broad abiotic stresses.  相似文献   

13.
Being unable to move away from their places of germination, in order to avoid excess metal-induced damages, plants have to evolve different strategies and complex regulatory mechanisms to survive harsh conditions. While both ROS and auxin are documented to be important in plant response to metal stress, the mechanisms underlying the crosstalk between ROS and auxin in metal stress are poorly understood. In this review, we provide an update on the regulation of plant responses to metal-stress by ROS and auxin signaling pathways, primarily, with a focus on the copper, aluminum and cadmium stress. We aim at surveying the mechanisms underlying how metal stress modulates the changes in auxin distribution and the network of ROS and auxin in plant response to metal stress based on recent studies.  相似文献   

14.
胚胎发育晚期丰富蛋白(LEA蛋白)在自然条件下主要在种子发育晚期大量积累,植物LEA基因也在多种非生物胁迫下诱导表达。植物LEA蛋白是植物应对失水胁迫(包括干旱、盐碱、冷冻等)逆境的一种广泛存在的亲水性应答蛋白,具有很强的热稳定性。本论文就LEA蛋白的结构、分类、功能及抗逆性分子机制进行了概述与总结,为分离新的LEA蛋白成员,进行功能分析以及进一步发掘其潜在应用价值提供参考。  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号