首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question of how tetrapod limbs evolved from fins is one of the great puzzles of evolutionary biology. While palaeontologists, developmental biologists, and geneticists have made great strides in explaining the origin and early evolution of limb skeletal structures, that of the muscles remains largely unknown. The main reason is the lack of consensus about appendicular muscle homology between the closest living relatives of early tetrapods: lobe‐finned fish and crown tetrapods. In the light of a recent study of these homologies, we re‐examined osteological correlates of muscle attachment in the pectoral girdle, humerus, radius, and ulna of early tetrapods and their close relatives. Twenty‐nine extinct and six extant sarcopterygians were included in a meta‐analysis using information from the literature and from original specimens, when possible. We analysed these osteological correlates using parsimony‐based character optimization in order to reconstruct muscle anatomy in ancestral lobe‐finned fish, tetrapodomorph fish, stem tetrapods, and crown tetrapods. Our synthesis revealed that many tetrapod shoulder muscles probably were already present in tetrapodomorph fish, while most of the more‐distal appendicular muscles either arose later from largely undifferentiated dorsal and ventral muscle masses or did not leave clear correlates of attachment in these taxa. Based on this review and meta‐analysis, we postulate a stepwise sequence of specific appendicular muscle acquisitions, splits, and fusions that led from the ancestral sarcopterygian pectoral fin to the ancestral tetrapod forelimb. This sequence largely agrees with previous hypotheses based on palaeontological and comparative work, but it is much more comprehensive in terms of both muscles and taxa. Combined with existing information about the skeletal system, our new synthesis helps to illuminate the genetic, developmental, morphological, functional, and ecological changes that were key components of the fins‐to‐limbs transition.  相似文献   

2.
Tetrapods evolved from within the lobe‐finned fishes around 370 Ma. The evolution of limbs from lobe‐fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe‐finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins‐to‐limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links represent their anatomical connections—and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe‐finned fishes. Limbs and lobe‐fins show also a greater similarity between their pectoral and pelvic appendages than ray‐fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins‐to‐limbs transition.  相似文献   

3.
Appendicular skeletal traits are used to quantify changes in morphological disparity and morphospace occupation across the fish–tetrapod transition and to explore the informativeness of different data partitions in phylogeny reconstruction. Anterior appendicular data yield trees that differ little from those built from the full character set, whilst posterior appendicular data result in considerable loss of phylogenetic resolution and tree branch rearrangements. Overall, there is a significant incongruence in the signals associated with pectoral and pelvic data. The appendicular skeletons of fish and tetrapods attain similar levels of morphological disparity (at least when data are rarefied at the maximum sample size for fish in our study) and occupy similarly sized regions of morphospace. However, fish appear more dispersed in morphospace than tetrapods do. All taxa show a heterogeneous distribution in morphospace, and there is a clear separation between fish and tetrapods despite the presence of several evolutionarily intermediate taxa.  相似文献   

4.
The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.  相似文献   

5.
The fossil record provides unique clues about the primitive pattern of lobed fins, the precursors of digit-bearing limbs. Such information is vital for understanding the evolutionary transition from fish fins to tetrapod limbs, and it guides the choice of model systems for investigating the developmental changes underpinning this event. However, the evolutionary preconditions for tetrapod limbs remain unclear. This uncertainty arises from an outstanding gap in our knowledge of early lobed fins: there are no fossil data that record primitive pectoral fin conditions in coelacanths, one of the three major groups of sarcopterygian (lobe-finned) fishes. A new fossil from the Middle-Late Devonian of Wyoming preserves the first and only example of a primitive coelacanth pectoral fin endoskeleton. The strongly asymmetrical skeleton of this fin corroborates the hypothesis that this is the primitive sarcopterygian pattern, and that this pattern persisted in the closest fish-like relatives of land vertebrates. The new material reveals the specializations of paired fins in the modern coelacanth, as well as in living lungfishes. Consequently, the context in which these might be used to investigate evolutionary and developmental relationships between vertebrate fins and limbs is changed. Our data suggest that primitive actinopterygians, rather than living sarcopterygian fishes and their derived appendages, are the most informative comparators for developmental studies seeking to understand the origin of tetrapod limbs.  相似文献   

6.
Fish fingers: digit homologues in sarcopterygian fish fins   总被引:2,自引:0,他引:2  
A defining feature of tetrapod evolutionary origins is the transition from fish fins to tetrapod limbs. A major change during this transition is the appearance of the autopod (hands, feet), which comprises two distinct regions, the wrist/ankle and the digits. When the autopod first appeared in Late Devonian fossil tetrapods, it was incomplete: digits evolved before the full complement of wrist/ankle bones. Early tetrapod wrists/ankles, including those with a full complement of bones, also show a sharp pattern discontinuity between proximal elements and distal elements. This suggests the presence of a discontinuity in the proximal-distal sequence of development. Such a discontinuity occurs in living urodeles, where digits form before completion of the wrist/ankle, implying developmental independence of the digits from wrist/ankle elements. We have observed comparable independent development of pectoral fin radials in the lungfish Neoceratodus (Osteichthyes: Sarcopterygii), relative to homologues of the tetrapod limb and proximal wrist elements in the main fin axis. Moreover, in the Neoceratodus fin, expression of Hoxd13 closely matches late expression patterns observed in the tetrapod autopod. This evidence suggests that Neoceratodus fin radials and tetrapod digits may be patterned by shared mechanisms distinct from those patterning the proximal fin/limb elements, and in that sense are homologous. The presence of independently developing radials in the distal part of the pectoral (and pelvic) fin may be a general feature of the Sarcopterygii.  相似文献   

7.
Summary The Archipterygium is Gegenbaur’s most lasting contribution to the study of vertebrate limb evolution. This transformational hypothesis of gill arches to limb girdles, rays to fins, and proposal of a vertebrate fin-limb groundplan, is generally treated as a flawed alternative to the more widely accepted lateral fin-fold hypothesis of vertebrate limb evolution. When compared to the phylogenetic distribution and diversity of fins and limbs, both hypotheses fail. Dermal skeletal lateral folds, spines and keels originate repeatedly in vertebrate evolution, but paired fins with girdles originate at pectoral level and are anteroposteriorly restricted. Pelvic fins emerge later in phylogeny; pectoral and pelvic appendages primitively differ. Endoskeletal girdles never exhibit characteristics of gill arches. The emergent sequence of paired fin evolution depends upon phylogenetic hypotheses within which extant agnathan interrelationships are uncertain; positions of jawless fossil fish along the gnathostome stem are insecure; the fossil data set is patchy. However, certain features of the data set are robust. This has prompted a reconsideration of Gegenbaur’s hypothesized arch-girdle relationship, and an iterative homology between scapulocoracoid and extrabranchial cartilages is suggested. No transformation of arch to girdle is necessarily implied, but some signal of developmental relatedness is predicted.  相似文献   

8.
SYNOPSIS. The evolution of the tetrapod limb is examined fromtwo perspectives: structural and functional. Rosen et al. (1981)argued that lungfishes are the sister group of tetrapods, withlimb characteristics comprising an important subset of theirevidence. A re-analysis of the limb characters advocated byRosen et al. does not support their contention, but insteadsuggests that rhipidistian fishes of the family Osteolepidaeare the closest relatives of the tetrapods. In order to understandthe probable selective pressures leading to evolution of thetetrapod limb, a functional analysis of the fins of antennariidanglerfishes was performed. Antennariids use their limb-likefins to traverse underwater substrates. The analysis revealsa large number of functional and morphological convergencesbetween antennariid fins and tetrapod limbs. It is suggestedthat tetrapod limbs were evolved for underwater transport ratherthan for locomotion on dry land.  相似文献   

9.
Summary Paleontological and anatomical evidence suggests that the autopodium (hand or foot) is a novel feature that distinguishes limbs from fins, while the upper and lower limb (stylopod and zeugopod) are homologous to parts of the sarcopterygian paired fins. In tetrapod limb development Hoxa-11 plays a key role in differentiating the lower limb and Hoxa-13 plays a key role in differentiating the autopodium. It is thus important to determine the ancestral functions of these genes in order to understand the developmental genetic changes that led to the origin of the tetrapod autopodium. In particular it is important to understand which features of gene expression are derived in tetrapods and which are ancestral in bony fishes. To address these questions we cloned and sequenced the Hoxa-11 and Hoxa-13 genes from the North American paddlefish, Polyodon spathula, a basal ray-finned fish that has a pectoral fin morphology resembling that of primitive bony fishes ancestral to the tetrapod lineage. Sequence analysis of these genes shows that they are not orthologous to the duplicated zebrafish and fugu genes. This implies that the paddlefish has not duplicated its HoxA cluster, unlike zebrafish and fugu. The expression of Hoxa-11 and Hoxa-13 in the pectoral fins shows two main phases: an early phase in which Hoxa-11 is expressed proximally and Hoxa-13 is expressed distally, and a later phase in which Hoxa-11 and Hoxa-13 broadly overlap in the distal mesenchyme of the fin bud but are absent in the proximal fin bud. Hence the distal polarity of Hoxa-13 expression seen in tetrapods is likely to be an ancestral feature of paired appendage development. The main difference in HoxA gene expression between fin and limb development is that in tetrapods (with the exception of newts) Hoxa-11 expression is suppressed by Hoxa-13 in the distal limb bud mesenchyme. There is, however, a short period of limb bud development where Hoxa-11 and Hoxa-13 overlap similarly to the late expression seen in zebrafish and paddlefish. We conclude that the early expression pattern in tetrapods is similar to that seen in late fin development and that the local exclusion by Hoxa-13 of Hoxa-11 from the distal limb bud is a derived feature of limb developmental regulation.  相似文献   

10.
Homology continues to be a concept of central importance in the study of phylogenetic relations, but its relation to ontogenetic processes remains problematical. A definition of homology in terms of equivalent morphogenetic processes is defined and applied to the comparative study of tetrapod limbs. This allows for a consistent treatment of relations of similarity and difference of appendage structure in vertebrates, and the distinction between fishes fins and tetrapod limbs in terms of the concept of equivalence is described. The role of genes can also be clarified in this context, in particular the influence of the Hox 4 complex in determining digit character and the homeotic transformations that arise from changes in their expression patterns. It is argued that these observations are not compatible with the notion of homology between individual digits (I, II, III, etc.) across the tetrapods, and that homology cannot be consistently identified with gene action. The relations between homology and the properties of the morphogenetic limb field are discussed.  相似文献   

11.
Zhu M  Yu X  Choo B  Qu Q  Jia L  Zhao W  Qiao T  Lu J 《PloS one》2012,7(4):e35103

Background

The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence.

Methodology/Principal Findings

Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation.

Conclusions/Significance

The new findings reveal hitherto unknown similarity in pectoral and pelvic girdles among early osteichthyans, and provide critical information for studying the evolution of pelvic girdles in osteichthyans and other gnathostomes.  相似文献   

12.
Ahn D  Ho RK 《Developmental biology》2008,322(1):220-233
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.  相似文献   

13.
Current phylogenies show that paired fins and limbs are unique to jawed vertebrates and their immediate ancestry. Such fins evolved first as a single pair extending from an anterior location, and later stabilized as two pairs at pectoral and pelvic levels. Fin number, identity, and position are therefore key issues in vertebrate developmental evolution. Localization of the AP levels at which developmental signals initiate outgrowth from the body wall may be determined by Hox gene expression patterns along the lateral plate mesoderm. This regionalization appears to be regulated independently of that in the paraxial mesoderm and axial skeleton. When combined with current hypotheses of Hox gene phylogenetic and functional diversity, these data suggest a new model of fin/limb developmental evolution. This coordinates body wall regions of outgrowth with primitive boundaries established in the gut, as well as the fundamental nonequivalence of pectoral and pelvic structures. BioEssays 20 :371–381, 1998. © 1998 John Wiley & Sons Inc.  相似文献   

14.
The postcranial stem tetrapod remains from Scat Craig include a neural arch, humerus, tibia, femur, and incomplete pectoral girdles and ilia. These elements are all large or very large compared with the corresponding bones of other stem tetrapods. They correlate well in size with the proportions of Elginerpeton , the known stem tetrapod from Scat Craig, and probably belong to this genus. The neural arch has weak zygapophyses, and the ilia and shoulder girdles resemble those of Ichthyostega . The femur is strongly twisted, with the intercondylar fossa facing anteroventrally, so the hind limb probably functioned as a paddle. The tibia is broad, as in Acanthostega and Ichthyostega . The humerus is approximately intermediate in shape between those of osteolepiforms and later stem tetrapods, but seems to have a ventral radial facet like Ichthyostega . Overall, the postcranial bones combine apparent synapomorphies with Ichthyostega and characters which are uniquely primitive among stemgroup tetrapods. This character combination is incongruent. A recently discovered postorbital bone from the site is, strictly speaking, indeterminable but may belong to Elginerpeton ; it broadly resembles the postorbitals of Ichthyostega and Acanthostega , and demonstrates that the typical stem tetrapod facial morphology had evolved before the end of the Frasnian.  相似文献   

15.
The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev   总被引:1,自引:1,他引:0  
Postcranial remains of the Russian Late Devonian tetrapod Tulerpeton include the hexadactylous fore limb, hind limb, anocleithral pectoral girdle, squamation, and associated disarticulated postcranial bones. A cladistic analysis indicates that Tulerpeton is a reptiliomorph stem-group amniote and the earliest known crown-group tetrapod: Acanthostega and Ichthyostega are successively more derived plesion stem-group tetrapods and do not consititute a monophyletic ichthyostegalian radiation. Previous analyses suggesting a profound split in tetrapod phylogeny are thereby corroborated, and likewise the interpretation of Westlothiana as a stem-group amniote. The divergence of reptiliomorphs from batrachomorphs occurred before the Devonian-Carboniferous boundary. Tulerpeton originates from an entirely aquatic environment with a diverse fish fauna. The morphologies of its limbs and those of Devonian stem-tetrapods suggest that dactyly predates the elaboration of the carpus and tarsus, and that Polydactyly persisted after the evolutionary divergence of the principal lineages of living tetrapods. The apparent absence of a branchial lamina and gill skeleton suggests that Tulerpeton was primarily air-breathing, whereas contemporary stem-group tetrapods and more recent batrachomorphs retained greater emphasis on gill-breathing.  相似文献   

16.
The pectoral fins of Acipenseriformes possess endoskeletons with elements homologous to both the fin radials of teleosts and the limb bones of tetrapods. Here we present a study of pectoral fin development in the North American paddlefish, Polyodon spathula, and the white sturgeon, Acipenser transmontanus, which reveals that aspects of both teleost and tetrapod endoskeletal patterning mechanisms are present in Acipenseriformes. Those elements considered homologous to teleost radials, the propterygium and the mesopterygial radials, form via subdivision of an initially chondrogenic plate of mesenchymal cells called the endoskeletal disc. In Acipenseriformes, elements homologous to the sarcopterygian metapterygium develop separately from the endoskeletal disc as an outgrowth of the endoskeletal shoulder girdle that extends into the posterior margin of the finbud. As in tetrapods, the elongating metapterygium and the metapterygial radials form in a proximal to distal order as discrete condensations from initially nonchondrogenic mesenchyme. Patterns of variation seen in the Acipenseriform fin also correlate with putative homology: all variants from the "normal" fin bauplan involved the metapterygium and the metapterygial radials alone. The primary factor distinguishing Polyodon and Acipenser fin development from each other is the composition of the endoskeletal extracellular matrix. Proteoglycans (visualized with Alcian Blue) and Type II collagen (visualized by immunohistochemistry) are secreted in different places within the mesenchymal anlage of the fin elements and girdle and at different developmental times. Acipenseriform pectoral fins differ from the fins of teleosts in the relative contribution of the endoskeleton and dermal rays. The fins of Polyodon and Acipenser possess elaborate endoskeletons overlapped along their distal margins by dermal lepidotrichia. In contrast, teleost fins generally possess relatively small endoskeletal radials that articulate with the dermal fin skeleton terminally, with little or no proximodistal overlap.  相似文献   

17.
The development of the tetrapod pectoral and pelvic girdles is intimately linked to the proximal segments of the fore‐ and hindlimbs. Most studies on girdles are osteological and provide little information about soft elements such as muscles and tendons. Moreover, there are few comparative developmental studies. Comparative data gleaned from cleared‐and‐stained whole mounts and serial histological sections of 10 species of hylid frogs are presented here. Adult skeletal morphology, along with bones, muscles, and connective tissue of both girdles and their association with the proximal portions of the anuran fore‐ and hindlimbs are described. The data suggest that any similarity could be attributable to the constraints of their ball‐and‐socket joints, including incorporation of the girdle and stylopodium into a single developmental module. An ancestral state reconstruction of key structures and developmental episodes reveals that several development events occur at similar stages in different species, thereby preventing heterochronic changes. The medial contact of the halves of the pectoral girdle coincides with the emergence of the forelimbs from the branchial chamber and with the total differentiation of the linkage between the axial skeleton and the girdles. The data suggest that morphogenic activity in the anterior dorsal body region is greater than in the posterior one, reflecting the evolutionary sequence of the development of the two girdles in ancient tetrapods. The data also document the profound differences in the anatomy and development of the pectoral and pelvic girdles, supporting the proposal that the pectoral and pelvic girdles are not serially homologous, as was long presumed.  相似文献   

18.
The presence of two sets of paired appendages is one of the defining features of jawed vertebrates. We are interested in identifying genetic systems that could have been responsible for the origin of the first set of such appendages, for their subsequent duplication at a different axial level, and/or for the generation of their distinct identities. It has been hypothesized that four genes of the T-box gene family (Tbx2Tbx5) played important roles in the course of vertebrate limb evolution. To test this idea, we characterized the orthologs of tetrapod limb-expressed T-box genes from a teleost, Danio rerio. Here we report isolation of three of these genes, tbx2, tbx4, and tbx5. We found that their expression patterns are remarkably similar to those of their tetrapod counterparts. In particular, expression of tbx5 and tbx4 is restricted to pectoral and pelvic fin buds, respectively, while tbx2 can be detected at the anterior and posterior margins of the outgrowing fin buds. This, in combination with conserved expression patterns in other tissues, suggests that the last common ancestor of teleosts and tetrapods possessed all four of these limb-expressed T-box genes (Tbx2Tbx5), and that these genes had already acquired, and have subsequently maintained, their gene-specific functions. Furthermore, this evidence provides molecular support for the notion that teleost pectoral and pelvic fins and tetrapod fore- and hindlimbs, respectively, are homologous structures, as suggested by comparative morphological analyses. Received: 14 July 1999 / Accepted: 4 September 1999  相似文献   

19.
A genus-level supertree for early tetrapods is built using a matrix representation of 50 source trees. The analysis of all combined trees delivers a long-stemmed topology in which most taxonomic groups are assigned to the tetrapod stem. A second analysis, which excludes source trees superseded by more comprehensive studies, supports a deep phylogenetic split between lissamphibian and amniote total groups. Instances of spurious groups are rare in both analyses. The results of the pruned second analysis are mostly comparable with those of a recent, character-based and large-scale phylogeny of Palaeozoic tetrapods. Outstanding areas of disagreement include the branching sequence of lepospondyls and the content of the amniote crown group, in particular the placement of diadectomorphs as stem diapsids. Supertrees are unsurpassed in their ability to summarize relationship patterns from multiple independent topologies. Therefore, they might be used as a simple test of the degree of corroboration of nodes in the contributory analyses. However, we urge caution in using them as a replacement for character-based cladograms and for inferring macroevolutionary patterns.  相似文献   

20.
The West African lungfish (Protopterus annectens) performs benthic, pelvic fin‐driven locomotion with gaits common to tetrapods, the sister group of the lungfishes. Features of P. annectens movement are similar to those of modern tetrapods and include use of the distal region of the pelvic fin as a “foot,” use of the fin to lift the body above the substrate and rotation of the fin around the joint with the pelvis. In contrast to these similarities in movement, the pelvic fins of P. annectens are long, slender structures that are superficially very different from tetrapod limbs. Here, we describe the musculoskeletal anatomy of the pelvis and pelvic fins of P. annectens with dissection, magnetic resonance imaging, histology and 3D‐reconstruction methods. We found that the pelvis is embedded in the hypaxial muscle by a median rostral and two dorsolateral skeletal projections. The protractor and retractor muscles at the base of the pelvic fin are fan‐shaped muscles that cup the femur. The skeletal elements of the fin are serially repeating cartilage cylinders. Along the length of the fin, repeating truncated cones of muscles, the musculus circumradialis pelvici, are separated by connective tissue sheets that connect the skeletal elements to the skin. The simplicity of the protractor and retractor muscles at the base of the fin is surprising, given the complex rotational movement those muscles generate. In contrast, the series of many repeating segmental muscles along the length of the fin is consistent with the dexterity of bending of the distal limb. P. annectens can provide a window into soft‐tissue anatomy and sarcopterygian fish fin function that complements the fossil data from related taxa. This work, combined with previous behavioral examination of P. annectens, illustrates that fin morphologies that do not appear to be capable of walking can accomplish that function, and may inform the interpretation of fossil anatomical evidence. J. Morphol. 275:431–441, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号