首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, gene disruption by homologous recombination in embryonic stem cells is only feasible in mice. To circumvent this problem, we silenced mineralocorticoid receptor (MR) expression by RNA interference in knockdown rats generated through lentiviral transgenesis. Analysis of the F1 progeny at 3 wk of age revealed strongly decreased MR levels. This was specific for the targeted gene and related to the abundance of the short interfering RNA. Reminiscent of MR knockout mice, the transgenic rats showed a reduced body weight, elevated serum aldosterone levels, increased plasma renin activity, and altered expression of MR target genes. Some of these effects correlated with the degree to which MR mRNA expression was reduced. Whereas disruption of the MR by gene targeting in mice leads to postnatal death, our strategy also allowed obtaining adult knockdown rats with defects in hormone and electrolyte homeostasis resembling pseudohypoaldosteronism. In conclusion, this is the first example of a human disease model based on RNA interference in rats.  相似文献   

2.
The non-genomic transmission of maternal behavior from one generation to the next illustrates the pervasive influence of maternal care on offspring development and the high degree of plasticity within the developing maternal brain. Investigations of the mechanisms through which these maternal effects are achieved have demonstrated environmentally-induced changes in gene expression associated with epigenetic modifications within the promoter region of target genes. These findings raise challenging questions regarding the pathways linking experience to behavioral variation and the broader ecological/evolutionary implications of the dynamic changes in neuroendocrine function that emerge. This review will highlight studies in laboratory rodents which demonstrate plasticity in the maternal brain and the role of maternally-induced changes in DNA methylation in establishing the link between variations in maternal care and consequent developmental outcomes. The persistence of maternal effects across generations and the trade-offs in reproduction that are evident in female offspring who experience high vs. low levels of maternal care contribute to our understanding of the divergent strategies that are triggered by the quality of early-life experiences. Evolving concepts of inheritance and the interplay between genes and the environment may advance our understanding of the origins of individual differences in phenotype.  相似文献   

3.
4.
5.
Transgenic animal models have played a major role in advancing our understanding of tumorigenesis. The most important recent advance has been the production of animals bearing targeted mutations generated by homologous recombination. For the first time, we can ask questions about loss of gene function and the consequences of gene alterations in situ. Perhaps most significantly, this approach has been applied to two of the tumour suppressor genes, Rb and p53. Homologous recombination has helped to clarify not only the normal roles of these genes, but also the mechanisms by which their dysfunction may lead to tumorigenesis.  相似文献   

6.
Pumilio-2 function in the mouse nervous system   总被引:1,自引:0,他引:1  
Coordinated mRNA translation at the synapse is increasingly recognized as a critical mechanism for neuronal regulation. Pumilio, a translational regulator, is known to be involved in neuronal homeostasis and memory formation in Drosophila. Most recently, the mammalian Pumilio homolog Pumilio-2 (Pum2) has been found to play a role in the mammalian nervous system, in particular in regulating morphology, arborization and excitability of neuronal dendrites, in vitro. However, the role of Pum2 in vivo remains unclear. Here, we report our investigation of the functional and molecular consequences of Pum2 disruption in vivo using an array of neurophysiology, behavioral and gene expression profiling techniques. We used Pum2-deficient mice to monitor in vivo brain activity using EEG and to study behavior traits, including memory, locomotor activity and nesting capacities. Because of the suspected role of Pum2 in neuronal excitability, we also examined the susceptibility to seizure induction. Finally, we used a quantitative gene expression profiling assay to identify key molecular partners of Pum2. We found that Pum2-deficient mice have abnormal behavioral strategies in spatial and object memory test. Additionally, Pum2 deficiency is associated with increased locomotor activity and decreased body weight. We also observed environmentally-induced impairment in nesting behavior. Most importantly, Pum2-deficient mice showed spontaneous EEG abnormalities and had lower seizure thresholds using a convulsing dosage of pentylenetetrazole. Finally, some genes, including neuronal ion channels, were differentially expressed in the hippocampus of Pum2-deficient mice. These findings demonstrate that Pum2 serves key functions in the adult mammalian central nervous system encompassing neuronal excitability and behavioral response to environmental challenges.  相似文献   

7.
The XRCC genes: expanding roles in DNA double-strand break repair   总被引:3,自引:0,他引:3  
Thacker J  Zdzienicka MZ 《DNA Repair》2004,3(8-9):1081-1090
Functional analysis of the XRCC genes continues to make an important contribution to the understanding of mammalian DNA double-strand break repair processes and mechanisms of genetic instability leading to cancer. New data implicate XRCC genes in long-standing questions, such as how homologous recombination (HR) intermediates are resolved and how DNA replication slows in the presence of damage (intra-S checkpoint). Examining the functions of XRCC genes involved in non-homologous end joining (NHEJ), paradoxical roles in repair fidelity and telomere maintenance have been found. Thus, XRCC5-7 (DNA-PK)-dependent NHEJ commonly occurs with fidelity, perhaps by aligning ends accurately in the absence of sequence microhomologies, but NHEJ-deficient mice show reduced frequencies of mutation. NHEJ activity seems to be involved in both mitigating and mediating telomere fusions; however, defective NHEJ can lead to telomere elongation, while loss of HR activity leads to telomere shortening. The correct functioning of XRCC genes involved in both HR and NHEJ is important for genetic stability, but loss of each pathway leads to different consequences, with defects in HR additionally leading to mitotic disruption and aneuploidy. Confirmation that these responses are likely to contribute to cancer induction and/or progression, is given by studies of humans and mice with XRCC gene disruptions: those affecting NHEJ show increased lymphoid tumours, while those affecting HR lead to breast cancer and perhaps to gynaecological tumours.  相似文献   

8.
The development and the function of central nervous system depend on thyroid hormones. In humans, the lack of thyroid hormones causes cretinism, a syndrome of severe mental deficiency. It is assumed that thyroid hormones affect the normal development and function of the brain by activating or suppressing target gene expression because several genes expressed in the brain have been shown to be under thyroid hormone control. Among these, the Rhes gene, encoding a small GTP-binding protein, is predominantly expressed in the striatal region of the brain. To clarify the role of Rhes in vivo, we disrupted the Rhes gene by homologous recombination in embryonic stem cells and generated mice homozygous for the Rhes null mutation (Rhes(-/-)). Rhes(-/-) mice were viable but weighed less than wild-type mice. Furthermore, they showed behavioral abnormalities, displaying a gender-dependent increase in anxiety levels and a clear motor coordination deficit but no learning or memory impairment. These results suggest that Rhes disruption affects selected behavioral competencies.  相似文献   

9.
Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address questions such as the origins of cognitive differences.  相似文献   

10.
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling. To better understand how Alx4 functions in the pathways that regulate AP-patterning, we also studied genomic regulatory sequences that are capable of directing expression of a reporter gene in a pattern corresponding to endogenous Alx4 expression in anterior limb bud mesenchyme. We observed, as expected for authentic Alx4 expression, expansion of reporter construct expression in a Shh-/- background. Total lack of reporter expression in a Gli3-/- background confirms the existence of Gli3-dependent and -independent Alx4 expression in the limb bud. Apparently, these two modules of Alx4 expression are linked to dissimilar functions.  相似文献   

11.
12.
13.
Profound impairment in social interaction is a core symptom of autism, a severe neurodevelopmental disorder. Deficits can include a lack of interest in social contact and low levels of approach and proximity to other children. In this study, a three-chambered choice task was used to evaluate sociability and social novelty preference in five lines of mice with mutations in genes implicated in autism spectrum disorders. Fmr1tm1Cgr/Y ( Fmr1−/y ) mice represent a model for fragile X, a mental retardation syndrome that is partially comorbid with autism. We tested Fmr1−/y mice on two genetic backgrounds, C57BL/6J and FVB/N-129/OlaHsd (FVB/129). Targeted disruption of Fmr1 resulted in low sociability on one measure, but only when the mutation was expressed on FVB/129. Autism has been associated with altered serotonin levels and polymorphisms in SLC6A4 (SERT) , the serotonin transporter gene. Male mice with targeted disruption of Slc6a4 displayed significantly less sociability than wild-type controls. Mice with conditional overexpression of Igf-1 (insulin-like growth factor-1) offered a model for brain overgrowth associated with autism. Igf-1 transgenic mice engaged in levels of social approach similar to wild-type controls. Targeted disruption in other genes of interest, En2 (engrailed-2) and Dhcr7 , was carried on genetic backgrounds that showed low levels of exploration in the choice task, precluding meaningful interpretations of social behavior scores. Overall, results show that loss of Fmr1 or Slc6a4 gene function can lead to deficits in sociability. Findings from the fragile X model suggest that the FVB/129 background confers enhanced susceptibility to consequences of Fmr1 mutation on social approach.  相似文献   

14.
The trillions of microbes living in the gut—the gut microbiota—play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity’s near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human–microbiome interactions.  相似文献   

15.
The molecular mechanisms by which liver genes are differentially expressed along a portocentral axis, allowing for metabolic zonation, are poorly understood. We provide here compelling evidence that the Wnt/beta-catenin pathway plays a key role in liver zonation. First, we show the complementary localization of activated beta-catenin in the perivenous area and the negative regulator Apc in periportal hepatocytes. We then analyzed the immediate consequences of either a liver-inducible Apc disruption or a blockade of Wnt signaling after infection with an adenovirus encoding Dkk1, and we show that Wnt/beta-catenin signaling inversely controls the perivenous and periportal genetic programs. Finally, we show that genes involved in the periportal urea cycle and the perivenous glutamine synthesis systems are critical targets of beta-catenin signaling, and that perturbations to ammonia metabolism are likely responsible for the death of mice with liver-targeted Apc loss. From our results, we propose that Apc is the liver "zonation-keeper" gene.  相似文献   

16.
17.
18.
Gene expression regulation by retinoic acid   总被引:16,自引:0,他引:16  
  相似文献   

19.
Research into Heliconius butterflies has made a significant contribution to evolutionary biology. Here, we review our understanding of the diversification of these butterflies, covering recent advances and a vast foundation of earlier work. Whereas no single group of organisms can be sufficient for understanding life's diversity, after years of intensive study, research into Heliconius has addressed a wide variety of evolutionary questions. We first discuss evidence for widespread gene flow between Heliconius species and what this reveals about the nature of species. We then address the evolution and diversity of warning patterns, both as the target of selection and with respect to their underlying genetic basis. The identification of major genes involved in mimetic shifts, and homology at these loci between distantly related taxa, has revealed a surprising predictability in the genetic basis of evolution. In the final sections, we consider the evolution of warning patterns, and Heliconius diversity more generally, within a broader context of ecological and sexual selection. We consider how different traits and modes of selection can interact and influence the evolution of reproductive isolation.  相似文献   

20.
Understanding the genetic basis of ecologically important traits is a major focus of evolutionary research. Recent advances in molecular genetic techniques should significantly increase our understanding of how regulatory genes function. By contrast, our understanding of the broader macro-evolutionary implications of developmental gene function lags behind. Here we review published data on the floral symmetry gene network (FSGN), and conduct phylogenetic analyses that provide evidence of a link between floral symmetry and breeding systems in angiosperms via dichogamy. Our results suggest that known genes in the FSGN and those yet to be described underlie this association. We posit that the integration of floral symmetry and the roles of other regulatory genes in plant breeding system evolution will provide new insights about macro-evolutionary patterns and processes in flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号