首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purL gene of Escherichia coli encoding the enzyme formylglycinamidine ribonucleotide (FGAM) synthetase which catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), glutamine, and MgATP to FGAM, glutamate, ADP, and Pi has been cloned and sequenced. The mature protein, as deduced by the structural gene sequence, contains 1628 amino acids and has a calculated Mr of 141,418. Comparison of the purL control region to other pur loci control regions reveals a common region of dyad symmetry which may be the binding site for the "putative" repressor protein. Construction of an overproducing strain permitted purification of the protein to homogeneity. N-Terminal sequence analysis and comparison of glutamine binding domain sequences (Ebbole & Zalkin, 1987) confirm the amino acid sequence deduced from the gene sequence. The purified protein exhibits glutaminase activity of 0.02% the normal turnover, and NH3 can replace glutamine as a nitrogen donor with a Km = 1 M and a turnover of 3 min-1 (2% glutamine turnover). The enzyme forms an isolable (1:1) complex with glutamine: t1/2 is 22 min at 4 degrees C. This isolated complex is not chemically competent to complete turnover when FGAR and ATP are added, demonstrating that ammonia and glutamine are not covalently bound as a thiohemiaminal available to complete the chemical conversion to FGAM. hydroxylamine trapping experiments indicate that glutamine is bound covalently to the enzyme as a thiol ester. Initial velocity and dead-end inhibition kinetic studies on FGAM synthetase are most consistent with a sequential mechanism in which glutamine binds followed by rapid equilibrium binding of MgATP and then FGAR. Incubation of [18O]FGAR with enzyme, ATP, and glutamine results in quantitative transfer of the 18O to Pi.  相似文献   

2.
5-Aminoimidazole ribonucleotide (AIR) synthetase, glycinamide ribonucleotide (GAR) synthetase, and GAR transformylase activities from chicken liver exist on a single polypeptide of Mr 110,000 [Daubner, C. S., Schrimsher, J. L., Schendel, F. J., Young, M., Henikoff, S., Patterson, D., Stubbe, J., & Benkovic, S. J. (1985) Biochemistry 24, 7059-7062]. Details of copurification of these three activities through four chromatographic steps are reported. The ratios of these activities remain constant throughout the purification. AIR synthetase has an absolute requirement for K+ for activity and under these conditions has apparent molecular weights of 330,000, determined by Sephadex G-200 chromatography, and 133,000, determined by sucrose density gradient ultracentrifugation. Incubation of 18O-labeled formylglycinamidine ribonucleotide (FGAM) with AIR synthetase results in stoichiometric production of AIR, ADP, and [18O]Pi. NMR spectra of beta-FGAM and beta-AIR are reported.  相似文献   

3.
Aminoimidazole ribonucleotide (AIR) synthetase has been purified 15-fold to apparent homogeneity from Escherichia coli which contains a multicopy plasmid containing the purM, AIR synthetase, gene. The protein is a dimer composed of two identical subunits of Mr 38,500. The N-terminal sequence, amino acid composition, and steady-state kinetics of the protein have been determined. AIR synthetase has been shown to catalyze the transfer of the formyl oxygen of [18O]formylglycinamide ribonucleotide to Pi.  相似文献   

4.
Glycinamide ribonucleotide (GAR) transformylase from HeLa cells has been purified 200-fold to apparent homogeneity with a procedure using two affinity resins. The activities glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase were found to copurify with GAR transformylase. Glycinamide ribonucleotide synthetase and GAR transformylase were separable only after exposure to chymotrypsin. Antibodies raised to pure L1210 cell GAR transformylase were able to precipitate the glycinamide ribonucleotide transformylase and GAR synthetase activities from HeLa and L1210 cells both in their native and in their proteolytically shortened forms. The compound N-10-(bromoacetyl)-5,8-dideazafolate was found to inhibit formylation but to leave the ATP-requiring synthetase activities intact.  相似文献   

5.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

6.
In Escherichia coli, the PurT-encoded glycinamide ribonucleotide transformylase, or PurT transformylase, catalyzes an alternative formylation of glycinamide ribonucleotide (GAR) in the de novo pathway for purine biosynthesis. On the basis of amino acid sequence analyses, it is known that the PurT transformylase belongs to the ATP-grasp superfamily of proteins. The common theme among members of this superfamily is a catalytic reaction mechanism that requires ATP and proceeds through an acyl phosphate intermediate. All of the enzymes belonging to the ATP-grasp superfamily are composed of three structural motifs, termed the A-, B-, and C-domains, and in each case, the ATP is wedged between the B- and C-domains. Here we describe two high-resolution X-ray crystallographic structures of PurT transformylase from E. coli: one form complexed with the nonhydrolyzable ATP analogue AMPPNP and the second with bound AMPPNP and GAR. The latter structure is of special significance because it represents the first ternary complex to be determined for a member of the ATP-grasp superfamily involved in purine biosynthesis and as such provides new information about the active site region involved in ribonucleotide binding. Specifically in PurT transformylase, the GAR substrate is anchored to the protein via Glu 82, Asp 286, Lys 355, Arg 362, and Arg 363. Key amino acid side chains involved in binding the AMPPNP to the enzyme include Arg 114, Lys 155, Glu 195, Glu 203, and Glu 267. Strikingly, the amino group of GAR that is formylated during the reaction lies at 2.8 A from one of the gamma-phosphoryl oxygens of the AMPPNP.  相似文献   

7.
8.
We demonstrate here that Escherichia coli synthesizes two different glycinamide ribonucleotide (GAR) transformylases, both catalyzing the third step in the purine biosynthetic pathway. One is coded for by the previously described purN gene (GAR transformylase N), and a second, hitherto unknown, enzyme is encoded by the purT gene (GAR transformylase T). Mutants defective in the synthesis of the purN- and the purT-encoded enzymes were isolated. Only strains defective in both genes require an exogenous purine source for growth. Our results suggest that both enzymes may function to ensure normal purine biosynthesis. Determination of GAR transformylase T activity in vitro required formate as the C1 donor. Growth of purN mutants was inhibited by glycine. Under these conditions GAR accumulated. Addition of purine compounds or formate prevented growth inhibition. The regulation of the level of GAR transformylase T is controlled by the PurR protein and hypoxanthine.  相似文献   

9.
The carbocyclic analogues of phosphoribosylamine, glycinamide ribonucleotide, and formylglycinamide ribonucleotide have been prepared as the racemates. Carbocyclic phosphoribosylamine was utilized as a substrate by the monofunctional glycinamide ribonucleotide synthetase from Escherichia coli as well as the glycinamide ribonucleotide synthetase activity of the eucaryotic trifunctional enzyme of de novo purine biosynthesis. Furthermore, carbocyclic glycinamide ribonucleotide was processed in the reverse reaction catalyzed by these enzymes. In addition, carbocyclic formylglycinamide ribonucleotide was converted, by E. coli formylglycinamide ribonucleotide synthetase, to carbocyclic formylglycinamidine ribonucleotide, which was accepted as a substrate by the aminoimidazole ribonucleotide synthetase activity of the trifunctional enzyme. This study has afforded carbocyclic substrate analogues, in particular for the chemically labile phosphoribosyl amine, for the initial steps of de novo purine biosynthesis.  相似文献   

10.
The examination results of a novel series of potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. These agents incorporate an electrophilic fluoronitrophenyl group that can potentially react with an active site nucleophile or the substrate GAR/AICAR amine via nucleophilic aromatic substitution.  相似文献   

11.
Three activities on the pathway of purine biosynthesis de novo in chicken liver, namely, glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase, have been found to reside on the same polypeptide chain. Three diverse purification schemes, utilizing three different affinity resins, give rise to the same protein since the final material has identical specific activities for all three enzymatic reactions and a molecular weight on sodium dodecyl sulfate gels of about 110 000. A single antibody preparation precipitates all three activities and binds to the multifunctional protein obtained by two methods in Western blots. Partial chymotryptic digestion of the purified protein gives rise to two fragments, one possessing glycinamide ribonucleotide synthetase activity and the other containing glycinamide ribonucleotide transformylase activity.  相似文献   

12.
Carbamyl phosphate synthetase from Escherichia coli has been shown to use only the A isomer of adenosine-5'-[2-thiotriphosphate] in both the ATPase reaction (MgATP HCO3- leads to MgADP + Pi) and the carbamyl phosphate synthesis reaction (2MgATP + HCO3- + L-glutamine leads to 2MgADP + Pi + carbamyl-P + L-glutamate). The B isomer was less than 5% as reactive. In the reverse reaction, only the A isomer of adenosine-5'-[2-thiotriphosphate] is synthesized from adenosine-5'-[2-thiodiphosphate] and carbamyl-P as determined by 31P NMR and a coupled enzymatic assay with Cd2+- hexokinase. It is therefore proposed that carbamyl phosphate synthetase uses the same diastereomer of MgATP at both ATP sites.  相似文献   

13.
Soybean nodule cDNA clones encoding glycinamide ribonucleotide (GAR) synthetase (GMpurD) and GAR transformylase (GMpurN) were isolated by complementation of corresponding Escherichia coli mutants. GAR synthetase and GAR transformylase catalyse the second and the third steps in the de novo purine biosynthesis pathway, respectively. One class of GAR synthetase and three classes of GAR transformylase cDNA clones were identified. Northern blot analysis clearly shows that these purine biosynthetic genes are highly expressed in young and mature nodules but weakly expressed in roots and leaves. Expression levels of GMpurD and GMpurN mRNAs were not enhanced when ammonia was provided to non-nodulated roots.  相似文献   

14.
5'-Phosphoribosylglycinamide transformylase (EC 2.1.2.2), encoded by the purN gene of Escherichia coli, catalyzes the synthesis of 5'-phosphoribosylformylglycinamide from 5'-phosphoribosylglycinamide (GAR). The mature protein, as deduced from the purN structural gene sequence, contains 212 amino acid residues and has a calculated Mr of 23,241. The purN gene is located adjacent to and immediately downstream from the purM gene encoding 5'-phosphoribosyl-5-aminoimidazole (AIR) synthetase where the initiation codon for GAR transformylase overlaps the termination codon of AIR synthetase. Based on polarity studies, the expression of the purN gene originates from the purM control region and thus forms a purMN operon. The E. coli GAR transformylase shows greater homology to the GAR transformylase domain of the trifunctional Gart polypeptide of Drosophila than to the single GAR transformylase of Saccharomyces. Immediately downstream from the purN gene of the purMN operon is a region of dyad symmetry capable of forming a hairpin stem and loop structure characteristic of a rho-independent terminator.  相似文献   

15.
J Aimi  H Qiu  J Williams  H Zalkin    J E Dixon 《Nucleic acids research》1990,18(22):6665-6672
The trifunctional enzyme encoding glycinamide ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide transformylase (GART) was cloned by functional complementation of an E. coli mutant using an avian liver cDNA expression library. In E. coli, genes encoding these separate activities (purD, purM, and purN, respectively) produce three proteins. The avian cDNA, in contrast, encodes a single polypeptide with all three enzyme activities. Using the avian DNA as a probe, a cDNA encoding the complete coding sequence of the trifunctional human enzyme was also isolated and sequenced. The deduced amino acid sequence of the human and avian polyproteins show extensive sequence homologies to the bacterial purD, purM, and purN encoded proteins. Avian and human liver RNAs appear to encode both a trifunctional enzyme (G-ARS-AIRS-GART) as well as an RNA which encodes only GARS. The trifunctional protein has been implicated in the pathology of Downs Syndrome and molecular tools are now available to explore this hypothesis. Initial efforts to compare the expression of GARS-AIRS-GART between a normal fibroblast cell line and a Downs Syndrome cell line indicate that the levels of RNA are similar.  相似文献   

16.
Granjon T  Vacheron MJ  Vial C  Buchet R 《Biochemistry》2001,40(9):2988-2994
Structural modifications of rabbit heart mitochondrial creatine kinase induced by the binding of its nucleotide substrates and Pi were investigated. Reaction-induced difference spectra (RIDS), resulting from the difference between infrared spectra recorded before and after the photorelease of a caged ligand, allow us to detect very small variations in protein structure. Our results indicated that the protein secondary structure remained relatively stable during nucleotide binding. Indeed, this binding to creatine kinase affected only a few amino acids, and caused small peptide backbone deformations and alterations of the carbonyl side chains of aspartate or glutamate, reflecting modifications within preexisting elements rather than a net change in secondary structure. Nonetheless, MgADP and MgATP RIDS were distinct, whereas the MgPi RIDS presented some similarities with the MgATP one. The difference between MgADP and MgATP RIDS could reflect a distinct configuration of the two metal-nucleotide complexes inducing a different positioning and/or a distinct binding mode to the creatine kinase active site. Comparison of the MgATP and MgPi RIDS suggests that Pi binding took place at the same binding site as the gamma-phosphoryl group of ATP. Thus, the difference between MgADP and MgATP RIDS would mainly be due to the effect of the gamma-P of ATP. The differences observed when comparing the RIDS resulting from the binding of nucleotides to octameric mitochondrial creatine kinase or dimeric cytosolic isoform could reflect the distinct oligomerization states and physicochemical or kinetic properties of the two isoenzymes.  相似文献   

17.
Glycinamide ribonucleotide transformylase catalyzes the conversion of glycinamide ribonucleotide and 10-formyltetrahydrofolate to formylglycinamide ribonucleotide and tetrahydrofolate. The enzyme purified from the murine lymphoma cell line L5178Y also catalyzes two other de novo purine biosynthetic activities, glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. The transformylase reaction shows a 1:1 stoichiometry for substrate utilization and an optimum rate between pH 7.9 and 8.3. Initial velocity and dead-end inhibition patterns indicate that the kinetic mechanism of the transformylation reaction is ordered-sequential, with 10-formyltetrahydrofolate binding first. alpha, beta-Hydroxyacetamide ribonucleotide (alpha, beta-N-(hydroxyacetyl)-D-ribofuranosylamine) is shown to be an inhibitor of the transformylase, competitive against glycinamide ribonucleotide.  相似文献   

18.
The kinetics of the SMP-catalyzed Pi-ATP exchange and oxidative phosphorylation was studied at variable [MgATP] + + [MgADP] and [MgATP]/[MgADP]. The existence on F1 of a center with a low affinity was demonstrated (KM = 0.4-2.7 mM). Saturation of this center with the Mg2+-complex of one of the nucleotides is obligatory for H+-ATPase to exhibit its ATP synthetase activity. It was found that with a decrease of [MgATP]/[MgADP] the lag periods, tau, of the reactions and KM(Pi) also show a decrease. Besides, in the Pi-ATP exchange reactions delta microH+ (steady-state) diminishes and SMP coupling is enhanced (the Vhydr/Vsynth ratio is decreased). Preincubation of SMP with MgADP eliminates the lags but does not affect the course of the steady-state reaction. It is concluded that F1 when bound to MgATP or MgADP changes to a "more" or "less coupled" conformational state, thus determining the rate of conversion to the ATP-synthetase functional state (ko = tau-1), the threshold potential of this conversion and the kinetic behaviour of ATP-synthetase (KM for Pi).  相似文献   

19.
A density functional theory (DFT) study is presented on the reaction mechanism of glycinamide ribonucleotide (GAR) with 10-formyl-5,8,10-trideazafolic acid (10f-TDAF), which is an inhibitor designed for GAR transformylase (GAR Tfase). There are three different paths for this system and the results indicate that inhibitor 10f-TDAF can form a very stable intermediate with the substrate GAR or generate an imine bond with GAR by elimination of water. The results have verified the presumption from available experiments and implied that 10f-TDAF would be an important target for anti-neoplastic intervention.  相似文献   

20.
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号