首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
IL-4 regulates differentiation and proliferation of human precursor B cells   总被引:6,自引:0,他引:6  
The mechanism by which precursor and pre-B cells undergo differentiation is unclear; however, it is known that growth factors play an important role in this maturation process. The lymphokine, IL-4 has been shown to increase expression of class II Ag on B cells and induce B cell proliferation. In the murine system, IL-4 induced differentiation of precursor B cells into pre-B cells. In order to analyze growth factors on B cell development we have established an in vitro culture system for human bone marrow cells. We found that in the presence of IL-4, normal human precursor and pre-B cells can be induced to differentiate in the absence of cell proliferation with four days of culture. Furthermore, IL-4 depressed proliferation induced by supernatant from a T cell line. The differentiation was measured by an increase in both the number of cytoplasmic mu and surface IgM-positive cells. The effect of IL-4 on precursor and pre-B cell differentiation was detected as soon as 14 h of exposure to the lymphokine in the absence of an adherent feeder layer. These data suggest that IL-4 directly affects the differentiation process of normal human precursor and pre-B cells, and may antagonistically affect cell proliferation.  相似文献   

2.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation.  相似文献   

3.
4.
5.
We have previously shown that IFN-beta, a key cytokine associated with the early phase of the innate host defense, can prevent the generation of human Th1 cells. Specifically, we demonstrated that IFN-beta prevents the in vitro monocyte-derived mature dendritic cell (DC)-dependent differentiation of naive Th cells into IFN-gamma-secreting Th cells, as a result of its ability to inhibit DC IL-12 secretion. The goal of the present study was to identify how IFN-beta negatively regulates IL-12 secretion by DC. We report that in our Th cell differentiation model, DC IL-12 secretion is dependent on the CD40L/CD40 accessory pathway, and, utilizing a Th cell-free system, we find that IFN-beta inhibits anti-CD40 mAb-induced DC secretion of the p40 chain of the IL-12 heterodimer. In addition, we show that IFN-beta-mediated inhibition of CD40 signaling does not interfere with all signaling pathways emanating from CD40, since anti-CD40 mAb-induced DC IL-6 secretion is augmented by IFN-beta. Thus, our results demonstrate that signaling from CD40 is differentially regulated by IFN-beta. A second critical element of innate immunity involves the response against components of bacterial membranes such as LPS. DC respond to LPS by secreting IL-6 and IL-12. In contrast to CD40-dependent IL-6 and IL-12 secretion, we find that LPS-induced DC secretion of p40 IL-12 and IL-6 is not affected by IFN-beta. Our findings show that IFN-beta influences the generation of acquired immune responses through its regulation of CD40-dependent DC functions.  相似文献   

6.
7.
The effect of IL-3 on the B lymphoid potential of human hemopoietic stem cells is controversial. Murine studies suggest that B cell differentiation from uncommitted progenitors is completely prevented after short-term exposure to IL-3. We studied B lymphopoiesis after IL-3 stimulation of uncommitted human CD34+CD38- cells, using the stromal cell line S17 to assay the B lymphoid potential of stimulated cells. In contrast to the murine studies, production of CD19+ B cells from human CD34+CD38- cells was significantly increased by a 3-day exposure to IL-3 (p < 0.001). IL-3, however, did not increase B lymphopoiesis from more mature progenitors (CD34+CD38+ cells) or from committed CD34-CD19+ B cells. B cell production was increased whether CD34+CD38- cells were stimulated with IL-3 during cocultivation on S17 stroma, on fibronectin, or in suspension. IL-3Ralpha expression was studied in CD34+ populations by RT-PCR and FACS. High IL-3Ralpha protein expression was largely restricted to myeloid progenitors. CD34+CD38- cells had low to undetectable levels of IL-3Ralpha by FACS. IL-3-responsive B lymphopoiesis was specifically found in CD34+ cells with low or undetectable IL-3Ralpha protein expression. IL-3 acted directly on progenitor cells; single cell analysis showed that short-term exposure of CD34+CD38- cells to IL-3 increased the subsequent cloning efficiency of B lymphoid and B lymphomyeloid progenitors. We conclude that short-term exposure to IL-3 significantly increases human B cell production by inducing proliferation and/or maintaining the survival of primitive human progenitors with B lymphoid potential.  相似文献   

8.
The derivation of human macrophages from peripheral blood monocytes remains a convenient method for the study of macrophage biology. However, for macrophage differentiation, a significant proportion of development has occurred prior to the monocyte stage; monocyte subsets also have varying potential for differentiation. Differentiation of macrophages from a less mature precursor, such as CD34+ haematopoietic stem cells, can further inform with regard to the development of macrophage-lineage cells. CD34+ cells were cultured in serum-free medium containing Flt3L, SCF, IL-3, IL-6 and M-CSF. Using differing combinations of growth factors, the effect on cell proliferation and differentiation to adherent macrophage-like cells was determined. The proliferative response of CD34+ cells to M-CSF was determined during the initial phase of cell culture. Thirteen combinations of SCF, IL-3, IL-6 and M-CSF were then compared to determine the optimum combination for proliferation. Adherence was used to isolate mature macrophages, and the macrophage-like phenotype was confirmed by analyses of surface markers, histo-morphology and phagocytosis. This study refines the means by which large numbers of macrophages are obtained under serum-free conditions from haematopoietic precursors.  相似文献   

9.
Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies.  相似文献   

10.
11.
Abstract

Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies.  相似文献   

12.
Toll-like receptors (TLRs) play a key role in pathogen recognition and regulation of the innate and adaptive immune responses. Although TLR expression and signaling have been investigated in blood cells, it is currently unknown whether their bone marrow ancestors express TLRs and respond to their ligands. Here we found that TLRs (e.g. TLR4, TLR7 and TLR8) were expressed by freshly isolated human bone marrow (BM) hematopoietic CD34+ progenitor cells. Incubation of these primitive cells with TLR ligands such as immunostimulatory small interfering RNAs and R848, a specific ligand for TLR7/8, induced cytokine production (e.g. IL1-beta, IL6, IL8, TNF-alpha, GM-CSF). Moreover, TLR7/8 signaling induced the differentiation of BM CD34+ progenitors into cells with the morphology of macrophages and monocytic dendritic precursors characterized by the expression of CD13, CD14 and/or CD11c markers. By contrast, R848 ligand did not induce the expression of glycophorin A, an early marker for erythropoiesis. Collectively, the data indicate for the first time that human BM CD34+ progenitor cells constitutively express functional TLR7/TLR8, whose ligation can induce leukopoiesis without the addition of any exogenous cytokines. Thus, TLR signaling may regulate BM cell development in humans.  相似文献   

13.
14.
Differentiation of CD34(+) haematopoietic stem cells into functional dendritic cells (DC) was investigated using the mAb CMRF-44 and other mAb against DC-associated markers. GM-CSF mobilized peripheral blood stem cells were obtained from healthy donors by leukapheresis. CD34(+) cells were purified using CD34(+)-positive selection,and subsequent immunomagnetic depletion of CD14 and CD2 cells. CD34(+) cells were cultured in medium supplemented with one or more of GM-CSF,TNF-alpha, IL-4 or IL-6. CMRF-44 Ag expression was monitored by flow cytometry, and DC function by allogeneic MLR and tetanus toxoid(TT) presentation assays. CD34(+) cells quickly acquired the CMRF-44 Ag when cultured in the presence of TNF-alpha.By day 3, more than 50% of the cells were double-positive for CD34 and CMRF-44. CD34 expression was gradually lost, so that by day 9, the majority of the cells were CD34(-)/CMRF-44(+).GM-CSF and TNF-alpha also induced CD40 expression, and up-regulation of CD54 and MHC class II on CD34(+) cells; their expression was correlated to the CMRF-44 Ag. Day 3 CD34(+)/CMRF-44(+) cells,but not CD34(+)/CMRF-44(-) cells, become potent APC when cultured further with GM-CSF plus TNF-alpha. These CMRF-44(+) cells were potent inducers of Th1-type immune response in the primary allogeneic MLR and present TT to autologous CD4(+) T cells. TNF-alpha alone is sufficient to induce CMRF-44 expression on CD34(+) cells, but in combination with GM-CSF expands the CMRF-44(+) population. CMRF-44 expression correlates with DC function and may be a useful early marker for commitment of CD34(+) cells to the DC differentiation pathway.  相似文献   

15.
MSCs (mesenchymal stem cells) may be promising seed cells for tissue regeneration because of their self-renewal and multi-differentiation potential. Shh (sonic hedgehog) is involved in the skeletal formation during embryo development and skeletal regeneration. However, how Shh regulates the biological characteristics of BM-MSCs (bone marrow-derived MSCs) is poorly understood. We have investigated the effect of rShh-N (recombinant N-terminal Shh) on the proliferation and osteogenic differentiation of rBM-MSCs (rat BM-MSCs) in vitro. rBM-MSCs were treated with rShh-N at concentrations up to 200 ng/ml. Proliferation and colony-forming ability of rBM-MSCs were increased in a dose-dependent manner. rShh-N increased the ratio of cells in S and G2/M phase, as well as the number of Ki-67+ cells. In addition, ALP (alkaline phosphatase) activity and matrix mineralization were enhanced by 200 ng/ml rShh-N. Real-time PCR showed that rShh-N (200 ng/ml) up-regulated the expression of genes encoding Cbfa-1 (core-binding factor α1), osteocalcin, ALP and collagen type I in rBM-MSCs. This information reveals some potential of rShh-N in the therapeutics of bone-related diseases.  相似文献   

16.
IL-7 is a critical component of thymopoiesis in animals and has recently been shown to play an important role in T cell homeostasis. Although there is increasing interest in the use of IL-7 for the treatment of lymphopenia caused by the HIV type 1, evidence that IL-7 may accelerate HIV replication has raised concerns regarding its use in this setting. We sought to identify the effects of IL-7 on human thymocyte survival and to determine the impact of IL-7 administration on in vivo HIV infection of the human thymus. Using in vitro analysis, we show that IL-7 provides potent anti-apoptotic and proliferative signals to early thymocyte progenitors. Analysis of CD34(+) subpopulations demonstrates that surface IL-7 receptor is expressed on most CD34(high)CD5(+)CD1a(-) thymocytes and that this subpopulation appears to be one of the earliest maturation stages responsive to the effects of IL-7. Thus, IL-7 provides survival signals to human thymocytes before surface expression of CD1a. CD4(+)CD8(+) thymocytes are relatively unresponsive to IL-7, although IL-7 protects these cells from dexamethasone-induced apoptosis. IL-7 has a predominantly proliferative effect on mature CD4(+)CD3(+)CD8(-) and CD8(+)CD3(+)CD4(-) thymocytes. In contrast to the in vitro findings, we observe that in vivo administration of IL-7 to SCID-hu Thy/Liv mice does not appear to enhance thymocyte survival nor does it appear to accelerate HIV infection. Given the growing interest in the use of IL-7 for the treatment of human immunodeficiency, these findings support additional investigation into its in vivo effects on thymopoiesis and HIV infection.  相似文献   

17.
In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.  相似文献   

18.
The CD34 protein is regarded as a marker of stem cells from multiple origins. Recently a mesenchymal progenitor CD34 positive cell identified from traumatized human skeletal muscle demonstrates differentiation capability into vascular endothelial cells, osteoblasts and adipocytes. Here they were treated with a small inhibitory RNA for CD34, which significantly reduced the cellular level of the CD34 protein. These treated cells had a reduced capacity to proliferate, and migrate. They were both unable to differentiation down multiple pathways and to undergo vascular endothelial differentiation as reflected by a lack of expression of VE cadherin, Tie 2 and CD31. Additionally the cells were unable to form tube-like structures in an endothelial tube assay. These treated cells were also unable to undergo osteogenesis, as revealed by lack of alizarin red and alkaline phosphatase staining and were unable to undergo adipogenesis as revealed by lack of oil red O staining. Finally, when CD34 was expressed in cells lacking this protein, the cells were able to undergo vascular endothelial differentiation as revealed by expression of Tie2, VE-cadherin and CD31. These data indicate that in cells derived from traumatized muscle the CD34 protein is required for enhanced proliferation, migration and differentiation down multiple pathways.  相似文献   

19.
The major cause of mortality in measles is generalized suppression of cell-mediated immunity that persists following virus clearance and results in secondary infections. The mechanisms contributing to this long-term immunosuppression are not clear. Herein we present evidence that measles virus (MV) disrupts hematopoiesis by infecting human CD34+ cells and human bone marrow stroma. MV infection does not affect the hematopoietic capability of hematopoietic stem cells (HSCs) directly; rather, the infection impairs the ability of stroma to support development of HSCs. These results suggest that MV-mediated defects in hematopoiesis contribute to the long-term immunosuppression seen in measles.  相似文献   

20.
Natural CD25(+)CD4(+) regulatory T cells (Treg) are essential for self-tolerance and for the control of T cell-mediated immune pathologies. However, the identification of Tregs in an ongoing immune response or in inflamed tissues remains elusive. Our experiments indicate that TIRC7, T cell immune response cDNA 7, a novel membrane molecule involved in the regulation of T lymphocyte activation, identifies two Treg subsets (CD25(low)TIRC7(+) and CD25(high)TIRC7(-)) that are characterized by the expression of Foxp3 and a suppressive activity in vitro and in vivo. We also showed that the CD25(low)TIRC7(+) subset represents IL-10-secreting Tregs in steady state, which is accumulated intratumorally in a tumor-bearing mice model. Blockade of the effect of IL-10 reversed the suppression imposed by the CD25(low)TIRC7(+) subset. Interestingly, these IL-10-secreting cells derived from the CD25(high)TIRC7(-) subset, both in vitro and in vivo, in response to tumoral Ags. Our present results strongly support the notion that, in the pool of natural Tregs, some cells can recognize foreign Ags and that this recognition is an essential step in their expansion and suppressive activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号