首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid (FA) composition of fresh mycelia of anaerobic rumen fungi was determined. The fatty acids methyl esters (FAME) of six strains belonging to four genera (Neocallimastix, Caecomyces, Orpinomyces, Anaeromyces) and one unknown strain were analyzed by gas chromatography. All studied fungi possess the same FAs but differences were found in their relative concentrations. The FA profile of anaerobic fungi comprises carbon chains of length ranging from 12 to 24; the most common fatty acids were stearic (C(18:0)), arachidic (C(20:0)), heneicosanoic (C(21:0)), behenic (C(22:0)), tricosanoic (C(23:0)) and lignoceric (C(24:0)) with relative amount representing >4% of total FA. Significant differences were determined for heptadecanoic, oleic, behenic and tricosanoic acids. Rumen anaerobic fungi can contain very long chain fatty acids; we found unsaturated fatty acids including cis-11-eicosenoic (C(20:1)), cis-11,14-eicosadienoic (C(20:2)), erucic (C(22:1n9)), cis-13,16-docosadienoic (C(22:2)) and nervonic (C(24:1)) acids in very small amounts but their presence seems to be unique for anaerobic fungi.  相似文献   

2.
Turions of Utricularia vulgaris L. were germinated in long-day conditions at 15°C for 1,3 and 6 days and their glycolipid composition was compared with that of resting but vernalized turions. Digalactosyldiacylglycerides (DGDG), monogalactosyldiacylglycerides (MGDG) and cerebrosides were present at all stages of development. No great changes were found in the glycolipid classes during sprouting but some differences were noted in the proportions of fatty acids. The most common fatty acids in all three glycolipid classes studied were 16:0, 18:0 and 18:2. MGDG and DGDG also contained relatively much 18:3 and its proportion increased during germination. Young turions and full-grown leaves collected from nature contained the same glycolipid classes as the sprouting turions. The developmental stage of the organs studied is reflected in the fatty acid composition of DGDG and MGDG but is not so evident in the cerebrosides. The 18:2 fatty acid is rather typical of the resting turions, especially in DGDG.  相似文献   

3.
Cultures of inflorescence and plumular tissues of coconut palm (Cocos nucifera L.) were maintained in the presence of the auxin, [14C]2,4-dichlorophenoxyacetic acid (2,4-D), so that its metabolic fate could be studied. Thin layer chromatography of methanol extracts of the plumular tissue showed that four classes of metabolites, as well as the unchanged acid, were recovered in the extract. In inflorescence tissue, only the unchanged acid and the most polar class of metabolites (metabolite I) were recovered. Metabolite I was shown to consist mostly of a mixture of sugar conjugates and metabolite II (the next most polar) was an unidentified basic metabolite. Metabolites III and IV were both novel triacylglycerol analogues in which one of the natural fatty acids was replaced with a chain-elongated form of 2,4-D. Reversed-phase thin layer chromatography was used to identify the 2,4-D-derived acids and it was found that metabolite III contained the 2,4-dichlorophenoxy-moiety attached to a chain-length of between 2 and 12 carbons, whereas metabolite IV contained 12, 14 and 16 carbon chain lengths. In inflorescence tissue, and in plumular tissue at low sucrose or 2,4-D concentrations and after short periods in culture, metabolite I predominated. The other metabolites increased as a percentage when plumular culture was prolonged or when sucrose or 2,4-D concentrations were raised. These changes correlated with better development of the explant.  相似文献   

4.
Modes of shedding of glycosphingolipids from mouse lymphoma cells   总被引:4,自引:0,他引:4  
To characterize the process by which glycolipids are shed from cell membranes, the cellular and supernatant glycolipids were compared from a variant of the mouse lymphoma L5178Y which had been selected for strong expression of the neutral glycolipid gangliotriaosylceramide (GgOse3Cer). This glycolipid was present in three forms which differed in their fatty acid composition. Whereas the major cell-associated form of GgOse3Cer contained C24 fatty acids, the predominant form shed into the culture supernatant contained C16 fatty acids. Ultracentrifugation of the culture medium yielded a pellet with a GgOse3Cer profile similar to that of the cells and a supernatant enriched in the C16 fatty acid form. Gel filtration of the culture medium revealed two GgOse3Cer-containing pools. The first was excluded from Sepharose CL-2B and had a GgOse3Cer profile similar to that of the cells, while the second migrated with proteins in the range of 25,000-500,000 daltons and was enriched in the C16 fatty acid form. These results suggest two forms in which glycolipids are released from cell membranes. The first is in a large complex, possibly a membrane vesicle, which retains the glycolipid profile of the membrane of intact cells while the second form appears to result from the preferential release of particular glycolipid components.  相似文献   

5.
Studies on the composition of total fatty acids of Alcaligenes faecalis harvested at different growth phases have been carried out. Ability of the organism to desaturate palmitic and stearic acid has also been tested. The organism contained palmitic (16:0), stearic (18:0), palmitoleic (16:1), cis-vaccenic (18:1), cyclopropane (17: big dn tri, open and 19: big dn tri, open), and three hydroxy acids. Increase in cyclopropane acids and corresponding decrease in monounsaturated acids in direct proportion to the age of the culture were observed, whereas other fatty acids remained relatively unaltered. A growing culture of the organism was found to desaturate [1-(14)C]palmitic acid supplied in the medium to hexadecanoic acid. Resting cells desaturated [1-(14)C]palmitic and [1-(14)C]stearic acid giving rise to about 50% of (14)C in the COOH group of corresponding monounsaturated fatty acids.  相似文献   

6.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

7.
The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, of 16 examined dinoflagellates. An interfraction comparison of fatty acids associated with phospholipids and glycolipids has also shown that the phospholipid fractions contained the majority (over 75% in 12 of 16 strains) of docosahexaenoic acid [22:6(n-3)] and traces of tetracosanoic acid (24:0). By contrast, the highly unsaturated C18 fatty acids octadecatetraenoic [18:4(n-3)] and octadecapentaenoic acid [18:5(n-3)] were primarily recovered from a chloroplast-associated glycolipid fraction comprised of monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol. In 12 of 16 strains, an interfraction comparison showed that over 90% of 18:5(n-3) was found to be associated with glycolipids. These findings indicate that the C28 fatty acids are located and probably synthesized in the cytoplasm or in an organelle other than the chloroplast, possibly with 22:6(n-3) and 24:0 as precursors, whereas the C18 fatty acids 18:4(n-3) and 18:5(n-3) are glycolipid constituents apparently synthesized within the chloroplast. The function(s) of these C28 fatty acids as components of phospholipids in cellular membranes is currently unknown.  相似文献   

8.
2-Hydroxysphingolipids are a subset of sphingolipids containing 2-hydroxy fatty acids. The 2-hydroxylation occurs during de novo ceramide synthesis and is catalyzed by fatty acid 2-hydroxylase (also known as fatty acid alpha-hydroxylase). In mammals, 2-hydroxysphingolipids are present abundantly in brain because the major myelin lipids galactosylceramides and sulfatides contain 2-hydroxy fatty acids. Here we report identification and characterization of a human gene that encodes a fatty acid 2-hydroxylase. Data base searches revealed a human homologue of the yeast ceramide 2-hydroxylase gene (FAH1), which we named FA2H. The FA2H gene encodes a 372-amino acid protein with 36% identity and 46% similarity to yeast Fah1p. The amino acid sequence indicates that FA2H protein contains an N-terminal cytochrome b5 domain and four potential transmembrane domains. FA2H also contains the iron-binding histidine motif conserved among membrane-bound desaturases/hydroxylases. COS7 cells expressing human FA2H contained 3-20-fold higher levels of 2-hydroxyceramides (C16, C18, C24, and C24:1) and 2-hydroxy fatty acids compared with control cells. Microsomal fractions prepared from transfected COS7 cells showed tetracosanoic acid 2-hydroxylase activities in an NADPH- and NADPH: cytochrome P-450 reductase-dependent manner. FA2H lacking the N-terminal cytochrome b5 domain had little activity, indicating that this domain is a functional component of this enzyme. Northern blot analysis showed that the FA2H gene is highly expressed in brain and colon tissues. These results demonstrate that the human FA2H gene encodes a fatty acid 2-hydroxylase. FA2H is likely involved in the formation of myelin 2-hydroxy galactosylceramides and -sulfatides.  相似文献   

9.
The fatty acid compositions of neutral lipid, glycolipid and phospholipid fractions from ice algae sampled from the Barents Sea in spring and autumn were examined for seasonal differences. The ice-algal assemblages were dominated by diatoms. In spring, Nitzschia frigida was the most common species whereas resting stages of Thalassiosira bioculata and Actinocyclus cf curvatulus predominated in autumn. With the exception of one spring sample, neutral lipids predominated over glycolipids and phospholipids in all algal samples. The lipid fractions displayed characteristic fatty acid compositions. In the spring samples the major fatty acids of the neutral lipid fraction were 16:0, 16:1(n-7) and 20:5(n-3) whilst the glycolipid fraction was characterised by higher levels of 20:5(n-3) and C16 polyunsaturated fatty acids, particularly 16:4(n-1). Phospholipids contained higher levels of 22:6(n-3) than the other two lipid fractions although 20:5(n-3) was still the major polyunsaturated fatty acid. In the autumn samples, the neutral lipid fraction contained higher proportions of saturated fatty acids and 16:1(n-7) than the two polar lipid fractions and 22:6(n-3) was most abundant in phospholipids. As with the spring samples, 20:5(n-3) was the major polyunsaturated fatty acid in all lipid fractions of the autumn algae. Overall, the fatty acid compositions of the lipid fractions from spring and autumn algal samples were similar and are consistent with diatoms being the predominant group in the ice algae studied. The high level of neutral lipids observed in both spring and autumn samples suggests that the production of neutral lipids is characteristic of ice algae regardless of season. Nevertheless, some species-specific differences in lipid production may exist since the neutral lipid content of autumn samples containing mainly A. curvatulus was substantially higher than those in which T. bioculata predominated. Received: 26 September 1997 / Accepted: 12 January 1998  相似文献   

10.
Isolated hepatocytes from Atlantic salmon (Salmo salar), fed diets containing either 100% fish oil or a vegetable oil blend replacing 75% of the fish oil, were incubated with a range of seven (14)C-labelled fatty acids. The fatty acids were [1-(14)C]16:0, [1-(14)C]18:1n-9, 91-(14)C]18:2n-6, [1-(14)C]18:3n-3, [1-(14)C]20:4n-6, [1-(14)C]20:5n-3, and [1-(14)C]22:6n-3. After 2 h of incubation, the hepatocytes and medium were analysed for acid soluble products, incorporation into lipid classes, and hepatocytes for desaturation and elongation. Uptake into hepatocytes was highest with [1-(14)C]18:2n-6 and [1-(14)C]20:5n-3 and lowest with [1-(14)C]16:0. The highest recovery of radioactivity in the cells was found in triacylglycerols. Of the phospholipids, the highest recovery was found in phosphatidylcholine, with [1-(14)C]16:0 and [1-(14)C]22:6n-3 being the most prominent fatty acids. The rates of beta-oxidation were as follows: 20:4n-6>18:2n-6=16:0>18:1n-9>22:6n-3=18:3n-3=20:5n-3. Of the fatty acids taken up by the hepatocytes, [1-(14)C]16:0 and [1-(14)C]18:1n-9 were subsequently exported the most, with the majority of radioactivity recovered in phospholipids and triacylglycerols, respectively. The major products from desaturation and elongation were generally one cycle of elongation of the fatty acids. Diet had a clear effect on the overall lipid metabolism, with replacing 75% of the fish oil with vegetable oil resulting in decreased uptake of all fatty acids and reduced incorporation of fatty acids into cellular lipids, but increased beta-oxidation activity and higher recovery in products of desaturation and elongation of [1-(14)C]18:2n-6 and [1-(14)C]18:3n-3.  相似文献   

11.
1. The total yield of fatty acids from the whole envelopes was markedly higher than that obtained from the ordinary cell walls. In both samples the major fatty acids were C(16) and C(18) acids. 2. The whole envelopes contained C(18) acids and long-chain (C(19)-C(26)) fatty acids, in a higher proportion than did the ordinary cell walls. Fifteen fatty acids with more than 18 carbon atoms were identified, among which 2-hydroxy-C(26:0) and C(26:0) acids predominated. 3. A complex sphingolipid containing inositol, phosphorus and mannose was isolated from the whole cell envelopes. The main fatty acids of this lipid were 2-hydroxy-C(26:0) and C(26:0) acids. It was concluded that this sphingolipid is present both in the ordinary cell wall and in the plasma membrane of baker's yeast. 4. The neutral lipids amounted to over 50% and the glycerophosphatides to about 30% of the total fatty acid content of the whole envelope. The major fatty acids in these lipids were C(16:1), C(18:1) and C(16:0) acids. The proportion of fatty acids with more than 18 carbon atoms was lowest in the neutral lipids, whereas the neutral glycolipids contained the highest percentage of these fatty acids. Acidic glycolipids amounted to 14% of the total fatty acid content of the whole envelope. The presence of a cerebroside sulphate in this lipid fraction was demonstrated, whereas the high content of 2-hydroxy-C(26:0) acid found is caused by the complex inositol- and mannose-containing sphingolipid.  相似文献   

12.
Glucosylceramide (Glc beta 1-1Cer) was isolated from the spermatozoa of the starfish, Asterias amurensis. The long-chain bases of the glycolipid consisted of dihydroxy (d18:2, d18:3, d19:3, and d22:2), and trihydroxy (t22:1) types. Long-chain aldehydes derived from them were analyzed mainly by proton nuclear-magnetic resonance to determine the detailed structures. Two of the tri-unsaturated bases were identified as (4E,8E,10E)-2-amino-4,8,10-octadecatriene-1,3-di ol (d18:3) and (4E,8E,10E)-2-amino-9-methyl-4,8,10-octadecatriene+ ++-1,3-diol (d19:3), which is a novel base. Both d22:2 and t22:1 had a cis double bond at the C9 or C13 position. All fatty acids were 2-hydroxylated (C14-C25): Most of them were saturated and unbranched. About 10% was mono-unsaturated and unbranched (C22-C25), while saturated but branched (iso- and anteiso-types) C15-C18 acids were found as minor components. The main fatty acids, which summed up to more than 93% of the fatty acids in the glucosylceramide, were n-14h:0, n-15h:0, n-16h:0, n-17h:0, n-18h:0, and n-24h:1.  相似文献   

13.
Two gangliosides, representing 85% of total lipid-bound sialic acid, have been isolated from bovine buttermilk and characterized. Both contained long-chain base, glucose, galactose and sialic acid in the molar ratio 1:1:1:2, and gave, upon sialidase treatment, a neutral glycolipid, characterized as lactosylceramide. Partial acid hydrolysis, permethylation analysis and chromium trioxide oxidation indicated their basic oligosaccharide portion to be NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----4Glc. The difference between the two forms was exclusively in the ceramide moiety of the molecule, one containing mainly long-chain (C22-C25) fatty acids and an equimolar proportion of C16 and C18 long-chain bases, and the other mainly palmitic acid and C18 long-chain base.  相似文献   

14.
Seasonal variations in lipid classes and fatty acid composition of triacylglycerols and phospholipids in the digestive gland of Pecten maximus were studied over a period of 16 months. Acylglycerols predominated (19-77% of total lipids), in accordance with the role of the digestive gland as an organ for lipid storage in scallops. Seasonal variations were mainly seen in the acylglycerol content, while phospholipids (2.5-10.0% of total lipids) and sterols (1.9-7.4% of total lipids) showed only minor changes. The most abundant fatty acids were 14:0, 16:0, 18:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 18:4(n-3), 20:5(n-3) and 22:6(n-3) and these showed similar seasonal profiles in both, triacylglycerol and phospholipid fractions. In contrast to the phospholipid fraction, the triacylglycerol fraction contained more 20:5(n-3) than 22:6(n-3). In three phospholipid samples we noted a high percentage of a 22-2-non-methylene-interrupted fatty acid, previously described to have a structural role in several bivalve species. The main polyunsaturated fatty acids displayed important seasonal variations parallel to those of the acylglycerols, suggesting good nutritional conditions. A positive correlation existed between the level of saturated fatty acids and temperature, whereas the levels of polyunsaturated fatty acids correlated negatively with temperature.  相似文献   

15.
We have previously reported that fetal rabbit lung tissue in organ culture produces a lamellar body material (pulmonary surfactant) with a lower percentage of disaturated phosphatidylcholine than is typically found in rabbit lung in vivo (Longmuir, K.J., C. Resele-Tiden, and L. Sykes. 1985. Biochim. Biophys. Acta. 833: 135-143). This investigation was conducted to identify all fatty acids present in the lamellar body phosphatidylcholine, and to determine whether the low level of disaturated phosphatidylcholine is due to excessive unsaturated fatty acid at position sn-1, sn-2, or both. Fetal rabbit lung tissue, 23 days gestation, was maintained in culture for 7 days in defined (serum-free) medium. Phospholipids were labeled in culture with [1-14C]acetate or [U-14C]glycerol (to follow de novo fatty acid biosynthesis), or with [1-14C]palmitic acid (to follow incorporation of exogenously supplied fatty acid). Radiolabeled fatty acid methyl esters obtained from lamellar body phosphatidylcholine were first separated by reverse-phase thin-layer chromatography (TLC) into two fractions of 1) 14:0 + 16:1 and 2) 16:0 + 18:1. Complete separation of the individual saturated and monoenoic fatty acids was achieved by silver nitrate TLC of the two fractions. Monoenoic fatty acid double bond position was determined by permanganate-periodate oxidation followed by HPLC of the carboxylic acid phenacyl esters. Lamellar body phosphatidylcholine contained four monoenoic fatty acids: 1) palmitoleic acid, 16:1 cis-9; 2) oleic acid, 18:1 cis-9; 3) cis-vaccenic acid, 18:1 cis-11; and 4) 6-hexadecenoic acid, 16:1 cis-6. In addition, 8-octadecenoic acid, 18:1 cis-8, was found in the fatty acids of the tissue homogenate. The abnormally low disaturated phosphatidylcholine content in lamellar body material was the result of abnormally high levels of monoenoic fatty acid (principally 16:1 cis-9) found at position sn-2. Position sn-1 contained normal levels of saturated fatty acid. The biosynthesis of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.  相似文献   

16.
Analysis of the lipids of Mycobacterium tuberculosis, by thin-layer chromatography, revealed the presence of two families of novel glycolipids each having two closely-related members but differing widely in polarity. The least and most polar families of lipids were characterized from M. tuberculosis strains C and H37Rv, respectively; all were based on trehalose, the least polar pair of glycolipids having more long-chain substituents than the more polar pair. The acyl substituents of the least polar of the four glycolipids were mainly straight-chain C16 and C18 acids and 2,4,6-trimethyltetracos-2-enoic (C27-mycolipenic) acid, and the second least polar glycolipid contained major amounts of 3-hydroxy-2,4,6-trimethyltetracosanoic (C27-mycolipanolic) acid in addition to these non-hydroxylated acids. The relatively polar pair of glycolipids were analysed together and released mainly straight-chain C16 and C18 acids, C27-mycolipanolic acid, minor amounts of C25- and C27-mycolipenic acids and major proportions of an acid having the chromatographic properties of 2,4-dimethyldocosanoic acid. The most polar pair of glycolipids co-chromatographed with glycolipid antigens previously detected in Mycobacterium bovis BCG.  相似文献   

17.
Incorporation of [1-14C]palmitic (16:0) and [1-14C]linoleic (18:2 omega 6) acids into microsomal membranes of proximal (jejunum) and distal (ileum) regions of rat small intestine was investigated, and the lipid composition, including fatty acid profiles of membrane phospholipids, was determined. Jejunal microsomes contained significantly higher amounts of total phospholipids, phosphatidylcholine, and phosphatidylinositol, and lower amounts of cholesterol and sphingomyelin when compared with ileal microsomes. Jejunal microsomal phospholipids contained higher levels of stearic (18:0), 18:2 omega 6, and eicosapentaenoic (20:5 omega 3) acids followed by reduced levels of oleic (18:1 omega 9), arachidonic (20:4 omega 6), and docosahexaenoic (22:6 omega 3) acids when compared with those from the ileum, except for phosphatidylinositol where no significant difference between 20:4 omega 6 content of each site was observed. In both jejunal and ileal microsomes, incorporation of [1-14C]18:2 omega 6 was significantly higher than that of [1-14C]16:0. Incorporation of both [1-14C]16:0 and [1-14C]18:2 omega 6 was significantly higher in jejunal microsomal lipid fractions (phospholipids, diacylglycerols, triacylglycerols) when compared with the ileal microsomal fraction. These data suggest that (1) jejunal and ileal microsomal membranes differ from each other in terms of lipid composition and lipid synthesis, (2) site variations in the specificity of acyltransferases for different fatty acids exist, and (3) higher delta 9-, delta 6-, delta 5-, and delta 4-desaturase activities exist in ileal compared with jejunal enterocytes.  相似文献   

18.
The fatty acid composition of the prymnesiophyte strain B, a cold stenothermic microalga, was examined. The major fatty acids derived from the total lipids in this strain were myristic (14:0), palmitic (16:0), oleic (18:1ω9), linoleic (18:2ω6), octadecatetraenoic (18:4ω3), octadecapentaenoic (18:5ω3), and docosahexaenoic (22:6ω3) acids. Octadecapentaenoic acid (18:5ω3) was an unusual component and was characterized by mass spectrometry, infrared absorption spectrometry, and proton nuclear magnetic resonance spectrometry. Saturated fatty acids (14:0 and 16:0) and 18:5ω3 were distributed at significant levels in the major classes of galactolipids (monogalacto-syldiacylglycerol, digalactosyldiacylglycerol, and sulfoqui-novosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine), and neutral lipids with the exception that phosphatidylethanolamine contained only trace amounts of 14:0. By contrast, 22:6ω3 was distributed in phospholipids and neutral lipids. A decrease in growth temperature from 5°C to 2°C was accompanied by a significant increase in levels of 18: 5ω3 and 18:4ω3 with a concomitant decrease in the level of saturated fatty acids, whereas the level of 22:6ω3 was scarcely changed. These results suggest that, in prymnesiophyte strain B, eighteen-carbon polyunsaturated fatty acids with more than three double bonds, 18:5ω3 in particular, serve as modulators of membrane fluidity. The potential role of 18:5ω3 as a specific marker for prym-nesiophytes is also discussed.  相似文献   

19.
The lipids from the electric organ of the ray, Torpedo marmorata, have been isolated and characterized. The major lipids were cholesterol, choline phospholipids, ethanolamine phospholipids, and sphingomyelins. The major fatty acids of ethanolamine phospholipids were 18:1, 18:0, 22:6, and 20:4. More than 50% of the acids in choline phospholipids were 16:0. The sphingomyelins consisted of five major ceramide species, all with sphingosine and the fatty acids 14:0, 15:0, 16:0, 22:1, and 24:1. The fatty acid 15:0 was mostly branched (n-2), a fatty acid earlier identified in sphingomyelins of the rectal gland of spiny dogfish. All long-chain bases were dihydroxy bases with a small percentage of branched chains. Sulfatides (cerebroside sulfate) made up the largest glycolipid fraction. The polar moiety wase galactose-3-sulfate. The fatty acids were normal and 2-hydroxy; the homologue 24:1 was the most abundant in both types of fatty acids. Most fatty acids were higher homologues of mono-unsaturated acids, but normal 18:0 fatty acid was also found. The long-chain bases were both dihydroxy and trihydroxy, with very small amounts of branched chains. The two major ceramide species of sulfatides were sphingosine combined with normal and hydroxy 24:1 fatty acids, respectively. Smaller amounts of trihydroxy base (18:0) were found linked to hydroxy 24:1 fatty acid, but not to its normal homologue. The cerebrosides contained the two major species mentioned above but lacked the trihydroxy base-hydroxy fatty acid species. The ratio of the activity of Na+-K+-dependent ATPase (EC 3.6.1.3) and the concentration of sulfatides was similar to ratios found for other tissues with normal and increased Na+ and K+ transporting capacity. The significance of this finding is discussed.  相似文献   

20.
'Interdigitation' is a term coined to describe the phenomenon whereby pure phosphatidylcholines with intramolecular fatty acid chain length heterogeneity when hydrated to form bilayers may insert the methyl ends of long fatty acids from one side across more than half of the membrane thickness to protrude amongst the acyl chains of the opposite side of the bilayer (Keough, K.M.W. and Davis, P.J. (1979) Biochemistry 18, 1453-1459; Huang, C. and Mason, J.T. (1986) Biochim. Biophys. Acta 864, 423-470). In this article we address the fate of long fatty acid chains of glycosphingolipids present as minor components in membranes of non-interdigitating phosphatidylcholines. In this pursuit, derivatives of galactosyl ceramide, lactosyl ceramide, globoside and GM1 were synthesized having either 18-carbon or 24-carbon fatty acid with a spin label covalently attached at C-16. Labelled glycolipids were incorporated at 1-2 mol% into bilayers of synthetic phosphatidylcholines, their mixtures with cholesterol, or natural egg phosphatidylcholine. In each case the C-16 carbon of the glycolipid long chain fatty acid showed considerably greater 'order' and immobility than did C-16 of the fatty acid which was similar in length to the host matrix phospholipids. We interpret this as strong evidence that the long chain fatty acid interdigitates across the mid point of the bilayer in the systems studied. Clearly this phenomenon did not require that the phospholipid host matrix have mixed chain lengths. Furthermore it was totally independent of glycolipid family: for a given host matrix and (glycolipid) fatty acid chain length the order parameter values found were the same amongst all four glycolipid families tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号