首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current studies we examined the effects of transforming growth factor type beta (TGF-beta) on the control of differentiation of BALB/c 3T3 T stem cells. We report that TGF-beta is a potent, reversible inhibitor of adipocyte differentiation (50% inhibition at approximately 0.06-0.08 ng/ml), while other biologically active polypeptides, such as epidermal growth factor (EGF), human growth hormone (hGH), and somatomedin C, have no specific effect on differentiation at even higher concentrations (200 ng/ml). We also report that TGF-beta inhibits differentiation in a cell cycle-dependent manner by its effect on a specific phase in the differentiation process. We therefore suggest that if TGF-beta is an important regulatory factor, one of its critical mechanisms of action may be its ability to inhibit the process of cell differentiation.  相似文献   

2.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), and transforming growth factor-β (TGF-β) are potent mitogens present in human platelets. Since they are likely to be released simultaneously at the site of vessel injury, their combined effects on vascular smooth muscle cells are more relevant physiologically than their individual actions. Therefore, we added various concentrations of growth factors to quiescent porcine aortic smooth muscle cells cultured in lowserum (0.5%) medium and measured the amount of [3H]thymidine incorporated into DNA. Effect of TGF-β alone was concentration-dependent: stimulatory (1.5-fold increase over the basal) at 0.025 ng/ml and inhibitory at 0.1 ng/ml. Effects of the other three growth factors on DNA synthesis were only stimulatory; their maximally effective concentrations were 20 ng/ml for PDGF (eightfold over the basal), 40 ng/ml for EGF (sixfold increase), and 20 ng/ml for IGF-I (fourfold increase). When PDGF, EGF, and IGF-I were added at submaximally effective concentrations, their effects were additive. TGF-β at 1 ng/ml inhibited at least 50% of the effects of 20 ng/ml EGF and of 10 ng/ml IGF-I, whereas inhibition of the effect of 10 ng/ml PDGF required 10 ng/ml of TGF-β. The concentration of TGF-β needed to inhibit 50% of the combined effect of EGF, IGF-1, and PDGF was 5 ng/ml. These results show complex interrelationships between the growth factors contained in the α-granules of human platelets in their effects on porcine aortic smooth muscle cells.  相似文献   

3.
Although the existence of an increasing number of angiogenesis-regulating cytokines is well documented, the response elicited by combinations of these cytokines is largely unknown. Using an in vitro model in which microvascular endothelial cells can be induced to form capillary-like tubes within three-dimensional collagen or fibrin gels, we have investigated the effect of transforming growth factor-β1 (TGF-β1) on basic fibroblast growth factor (bFGF)-induced and vascular endothelial growth factor (VEGF)-induced angiogenesis. Endothelial cell invasion and capillary lumen formation were inhibited by TGF-β1 at relatively high concentrations (5-10 ng/ml), while lower concentrations (100 pg/ml-1 ng/ml) of TGF-β1 potentiated the effect of bFGF- and VEGF-induced invasion. The optimal potentiating effect was observed at 200-500 pg/ml TGF-β1. At invasion-potentiating doses of TGF-beta;1, lumen size in fibrin gels was markedly reduced compared to that in cultures treated with bFGF alone. These results show that TGF-β1 exerts a biphasic effect on bFGF- and VEGF-induced angiogenesis in vitro. Our studies support the notion that the nature of the angiogenic response elicited by a specific cytokine is contextual, i.e., depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell.  相似文献   

4.
Three cytokines, interleukin 6 (IL-6), leukaemia inhibitory factor (LIF), and oncostatin M (OSM), that bind to composite receptors including a common signal transducer gp130 suppressed proliferation of a mouse B-cell hybridoma cell line 2E3-O cultured in serum-free medium, while they enhanced antibody production of the cells. The specific growth rate of the cells reduced from 1.0/day for control to 0.6/day for the cultures supplemented with IL-6, LIF, or OSM at 1, 4, or 2 ng/ml, respectively. The antibody productivity increased five-fold when the cells were cultured with IL-6, LIF, or OSM at 1, 25, or 20 ng/ml, respectively. Transforming growth factor β1 (TGF-β1) similarly suppressed growth of the cells at the concentration of 5 ng/ml, while it did not enhance the antibody production. Cell cycle analysis revealed that IL-6 induced the cells to be arrested at G1phase of the cell cycle more intensively than TGF-β1, indicating that IL-6 and TGF-β1 suppressed the growth through mutually different mechanisms. As a whole, this work suggests that gp130, which is commonly involved in each receptor for IL-6, LIF, OSM, transduces signals for suppressing proliferation and possibly for enhancing antibody production in the hybridoma cells.  相似文献   

5.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

6.
Dendritic cells are professional antigen presenting cells and central for establishing and maintaining immunity and immunological tolerance. They develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Dendritic cell development and function are regulated by specific cytokines, including transforming growth factor type β1 (TGF-β1). Our previous work demonstrated the importance of TGF-β1 signaling for dendritic cell development and subset specification. Here, we used genome-wide gene expression profiling with DNA microarrays to investigate the activity of TGF-β1 on gene expression in dendritic cell development. This study identified specific gene categories induced by TGF-β1 with an impact on dendritic cell biology.  相似文献   

7.
Enhanced expression of transforming growth factor-β1(TGF-β1) demonstrated in human colonic mucosa of patients with ulcerative colitis (UC), indicates its possible significance in the pathogenesis of this disease. The aim of this study was to evaluate plasma TGF-β1concentration in patients with different degrees of colonic mucosal injury, as a possible indicator of ulcerative colitis activity. TGF-β1concentration was measured with an enzyme immunoassay (EIA) in plasma of 45 patients with endoscopically confirmed UC. Values observed in UC patients (40.5±15.9 ng/ml) were significantly higher than in healthy people (18.3±11.6 ng/ml) and higher than in patients with irritable colon syndrome (ICS), (20.5±13.6 ng/ml). The highest plasma TGF-β1(58.6±112.1 ng/ml) was in patients with the severe UC course. TGF-β1level analysed in all UC patients revealed significant positive correlation with scored degree of mucosal injury (r=0.396;P<0.01). Among other possible laboratory markers of the disease activity, only C-reactive protein concentration demonstrated significant correlation. Enhanced production of TGF-β1can be related to inflammation activity. Measurement of plasma TGF-β1may be considered as a biomarker of the disease activity.  相似文献   

8.
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine with multiple roles in the immune system. To date, it has been difficult to develop a comprehensive picture of the effect of TGF-β on T lymphocytes, because TGF-β not only acts directly on T lymphocytes, but also acts indirectly by regulating the function of antigen-presenting cells. In early studies, it was mostly the inhibitory function of TGF-β that was demonstrated; recently, however TGF-β was recognized as an antiapoptotic survival factor for T lymphocytes. The outcome of the TGF-β effect on T lymphocytes was shown to strongly depend on their stage of differentiation and on the cytokine milieu. TGF-β cannot be classified as a classical Th1 or Th2 cytokine. However, recently the existence of the TGF-β-producing Th3 subset was described which might play an important regulatory role during an immune response. A better understanding of the molecular mechanism of how TGF-β inhibits or stimulates T lymphocytes will help to predict the complex functions of this cytokine.  相似文献   

9.
In this study we have employed a model system comprising three groups of colon carcinoma cell lines to examine the growth-inhibitory effects of two molecular forms of transforming growth factor-β (TGF-β), TGF-β1 and TGF-β2. Aggressive, poorly differentiated colon carcinoma cells of group I did not respond to growth inhibitory effects of TGF-β1 or TGF-β2, while less aggressive, well-differentiated cells of group III displayed marked sensitivity to both TGF-β1 and TGF-β2 in monolayer culture as well as in soft agarose. One moderately well-differentiated cell line from group II which has intermediate growth characteristics failed to respond to TGF-β1 or TGF-β2, but the growth of two other cell lines in this group was inhibited. TGF-β1 and TGF-β2 were equally potent, 50% growth inhibition for responsive cell lines being observed at a concentration of 1 ng/ml (40 pM). Antiproliferative effects of TGF-β1 and TGF-β2 in responsive cell lines of groups II and III were associated with morphological alterations and enhanced, concentration-dependent secretion of carcinoembryonic antigen. Radiolabeled TGF-β1 bound to all three groups of colon carcinoma cells with high affinity (Kd between 42 and 64 pM). These data indicate for the first time a strong correlation between the degree of differentiation of colon carcinoma cell lines and sensitivity to the antiproliferative and differentiation-promoting effects of TGF-β1 and TGF-β2.  相似文献   

10.
Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.  相似文献   

11.
We have previously shown that both transforming growth factor-β (TGF-β) and retinoic acid (HA) regulate the expression of cellular retinoic acid binding proteins (CRABP) I and II and TGF-β3 mRNAs in primary cultures of murine embryonic palate mesenchyreal (MEPM) cells. We now describe additional crosstalk between the RA and TGF-β signal transduction pathways—the ability of TGF-β, including the endogenous form(s), to modulate the expression of the nuclear retinoic acid receptor-β (RAR-β). Northern blot hybridization revealed that RA induced the expression of RAR-β mRNA, there being little or no detectable expression in untreated MEPM cells. Induction by 3.3 μM RA was abrogated by simultaneous treatment with TGF-β1 (5 ng/ml). TGF-β1 alone had no effect on RAR. mRNA expression. Determination of RAR-β mRNA half-life by treatment with actinomycin D indicated that TGF-β1 did not alter the stability of RAR-β mRNA. Conditioned medium (CM) from MEPM cells contained little active TGF-β protein; heat treatment of the CM dramatically increased the amount of active TGF-β as assessed by the mink lung epithelial cell bioassay. Furthermore, heat- or acid-activated CM also inhibited CRABP-I and RA-induced RAR-β expression. The effect of heat-activated conditioned medium could be abrogated with panspecific neutralizing antibodies to TGF-β, confirming that endogenous TGF-β is the biologically active factor in heat-activated CM. These results provide evidence for complex interactions between TGF-β and RA in the regulation of gene expression in embryonic palatal cells and suggest a role for endogenous TGF-β in the regulation of expression of genes encoding elements of the RA signal transduction pathway.  相似文献   

12.
13.
Rabbit articular chondrocytes were treated with retinoic acid (RA) to eliminate the differentiated phenotype marked by the synthesis of type II collagen and high levels of proteoglycan. Exposure of such cells to transforming growth factor-β1 (TGF-β1) in secondary culture under serum-free and RA-free, defined conditions led to reexpression of the differentiated phenotype. The microfilament modifying drug, dihydrocytochalasin B (DHCB), enhanced the effectiveness of TGF-β1 and produced a threefold stimulation of type II collagen reexpression (measured by 2-D CNBr peptide mapping) at 0.3 ng/ml TGF-β1 without altering total collagen synthesis. Type II collagen reexpression was maximal from 1 to 5 ng/ml TGF-β1, with or without DHCB. The effect of DHCB on proteoglycan synthesis was maximal at 1 ng/ml TGF-β1. At this dose TGF-β alone produced no increase in 35 SO4 incorporation, while simultaneous treatment with DHCB caused a sevenfold stimulation of proteoglycan synthesis. DHCB-independent stimulation of proteoglycan reexpression occurred between 5 and 15 ng/ml TGF-β1. In contrast, TGF-β1-dependent stimulation of proteoglycan synthesis in differentiated chondrocytes in primary monolayer culture was not substantially affected by DHCB. The collagen data suggest that TGF-β1 utilizes separate pathways to control phenotypic change and collagen (matrix) synthesis. Microfilament modification by DHCB selectively enhances the effectiveness of the TGF-β1-dependent signaling pathway that controls reexpression of the differentiated phenotype.  相似文献   

14.

Background

Transforming growth factor β1 (TGF-β1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1α1 (COL1A1), CTGF and MMP-2 mRNA.

Methods

Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 μM) in the absence or presence of the PPARγ antagonist GW9662 (10 μM) before TGFβ-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR.

Results

TGFβ-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ.

Conclusions

RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPARγ-dependent. Further studies are required to unravel additional mechanisms of inhibition of TGF-β1 signalling by thiazolidinediones and their implications for the contribution of EMT to lung fibrosis.  相似文献   

15.
In HER2-overexpressing mammary epithelial cells, transforming growth factor β (TGF-β) activated phosphatidylinositol-3 kinase (PI3K)/Akt and enhanced survival and migration. Treatment with TGF-β or expression of an activated TGF-β type I receptor (Alk5 with the mutation T204D [Alk5T204D]) induced phosphorylation of TACE/ADAM17 and its translocation to the cell surface, resulting in increased secretion of TGF-α, amphiregulin, and heregulin. In turn, these ligands enhanced the association of p85 with ErbB3 and activated PI3K/Akt. RNA interference of TACE or ErbB3 prevented TGF-β-induced activation of Akt and cell invasiveness. Treatment with TGF-β or expression of Alk5T204D in HER2-overexpressing cells reduced their sensitivity to the HER2 antibody trastuzumab. Inhibition of Alk5, PI3K, TACE, or ErbB3 restored sensitivity to trastuzumab. A gene signature induced by Alk5T204D expression correlated with poor clinical outcomes in patients with invasive breast cancer. These results suggest that by acting on ErbB ligand shedding, an excess of TGF-β may result in (i) conditioning of the tumor microenvironment with growth factors that can engage adjacent stromal and endothelial cells; (ii) potentiation of signaling downstream ErbB receptors, thus contributing to tumor progression and resistance to anti-HER2 therapies; and (iii) poor clinical outcomes in women with breast cancer.  相似文献   

16.
The dual role of transforming growth factor-beta (TGF-β) in modulating macrophage function is an important concept gaining increasing recognition. In addition to its role as a ‘macrophage-deactivating' agent, TGF-β functions as a monocyte activator, inducing cytoke production and mediating host defence. These functions are context-dependent, modulated by the differentiation state of the cell, the local cytokine environment, and the local levels of TGF-β in itself. In general, during the initial stages of inflammation, TGF-β locally acts as a proinflammatory agent by recruiting and activating resting monocytes. As these cells differentiate specific immunosuppressive actions of TGF-β predominate, leading to resolution of the inflammatory response. Increasing our understanding of the bidirectional regulation of macrophage function will facilitate prediction of the ultimate outcome of modulating TGF-β levels in vivo.  相似文献   

17.

Background

We have previously reported that repeated treatment of human periodontal ligament cells and murine pre-osteoblast MC3T3-E1 cells with transforming growth factor-beta 1 (TGF-β1) inhibited their osteoblastic differentiation because of decreased insulin-like growth factor-1 (IGF-1) secretion. We also found that IGF-1/PI3K signaling plays an important role in osteoblast differentiation induced by TGF-β1 treatment; however, the downstream signaling controlling this remains unknown. The aim of this current study is to investigate whether Akt activation is required for osteoblast differentiation.

Methodology/Principal Findings

MC3T3-E1 cells were cultured in osteoblast differentiation medium (OBM) with or without 0.1 ng/mL TGF-β1. OBM containing TGF-β1 was changed every 12 h to provide repeated TGF-β1 administration. MC3T3-E1 cells were infected with retroviral vectors expressing constitutively active (CA) or dominant-negative (DN)-Akt. Alkaline phosphatase (ALP) activity and osteoblastic marker mRNA levels were substantially decreased by repeated TGF-β1 treatment compared with a single TGF-β1 treatment. However, expression of CA-Akt restored ALP activity following TGF-β1 treatment. Surprisingly, ALP activity increased following multiple TGF-β1 treatments as the number of administrations of TGF-β1 increased. Activation of Akt significantly enhanced expression of osteocalcin, but TGF-β1 treatment inhibited this. Mineralization of MC3T3-E1 cells was markedly enhanced by CA-Akt expression under all medium conditions. Exogenous IGF-1 restored the down-regulation of osteoblast-related gene expression by repeated TGF-β1 administration. However, in cells expressing DN-Akt, these levels remained inhibited regardless of IGF-1 treatment. These findings indicate that Akt activation is required for the early phase of osteoblast differentiation of MC3T3-E1 cells induced by TGF-β1. However, Akt activation is insufficient to reverse the inhibitory effects of TGF-β1 in the late stages of osteoblast differentiation.

Conclusions

TGF-β1 could be an inducer or an inhibitor of osteoblastic differentiation of MC3T3-E1 cells depending on the state of Akt phosphorylation. Our results indicate that Akt is the molecular switch for TGF-β1-induced osteoblastic differentiation of MC3T3-E1 cells.  相似文献   

18.
Bone morphogenetic protein 2B (BMP-2B) also called BMP-4 is one of a family of cartilage and bone-inductive proteins derived from bone matrix and belongs to the transforming growth factor β (TGF-β) superfamily. These bone-inductive proteins isolated from adult bone may be involved in bone repair. However, they may also play a role in cartilage and bone formation during embryonic development. To test whether BMP-2B influences cartilage formation by embryonic cells, recombinant human BMP-2B was applied to cultured limb bud mesoderm plated at three different densities. BMP-2B stimulated cartilage formation as assessed by Alcian blue staining and incorporation of radioactive sulfate into sulfated proteoglycans. Cells cultured at all three densities in the presence of 10 ng/ml BMP-2B formed a nearly continuous sheet of cartilage with abundant extracellular matrix and type II collagen. In addition, when cells were cultured in 0.5% serum in the presence of 10 ng/ml of BMP-2B for 5 days there was an increase in alkaline phosphatase as detected by histochemical and biochemical methods. Transforming growth factor β isoforms (TGF-β1 and TGF-β2) inhibited sulfate incorporation into proteoglycans in a dose-dependent manner. This inhibition by TGFβ was overcome by recombinant BMP-2B. This study demonstrates that recombinant BMP-2B stimulates cartilage formation by chick limb bud mesoderm in vitro and is further modulated by TGF-β isoforms.  相似文献   

19.
While the effect of TGF-β on malignant B cells in non-Hodgkin lymphoma (NHL) has been previously evaluated, studies to specifically define the role of TGF-β in tumor immunity in B-cell NHL are limited. We found that soluble TGF-β, secreted by both lymphoma cells and intratumoral T cells, is present in the serum of patients with B-cell NHL. Soluble TGF-β promoted regulatory T (Treg) cells by enhancing expression of Foxp3 in CD4+ T cells and suppressed effector helper T (TH) cells by inhibiting expression of IFN-γ and IL-17. Blockade of the IL-2 signaling pathway diminished the effect of soluble TGF-β on T cell differentiation. Furthermore, we found that membrane-bound TGF-β is expressed specifically on the surface of malignant B cells in B-cell NHL. TGF-β was able to bind to the surface of lymphoma B cells through an interaction with heparan sulfate (HS) but not through the TGF-β receptor. We showed that pretreatment of lymphoma B cells with TGF-β significantly inhibits the proliferation and cytokine production of intratumoral T cells. Taken together, these results suggest that tumor-associated soluble and membrane-bound TGF-β are involved in the regulation of intratumoral T cell differentiation and function in B-cell NHL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号