首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot culture experiment was conducted on a loamy sand soil to study the effect of FYM and Fe on dry matter yield and uptake of nutrients by oats (Avena sativa) crop in green-house. Application of Fe @ 5 and 20 ppm increased dry matter yield by 5.11 and 11.55 per cent, respectively. The per cent increase in dry matter yield over control with the application of 0.5 and 1.0 percent FYM was 19.06 and 30.07, respectively. Application of FYM increased concentration and uptake of P significantly. Phosphorus uptake increased by 23.60, 54.38, 91.01 and 134.61 per cent over control with 0.5, 1.0, 2.0 and 4.0 per cent FYM, respectively. Phosphorus concentration decreased at 20 ppm Fe but uptake increased significantly at 5 ppm Fe. Concentration and uptake of Ca increased with increasing amounts of Fe and application of FYM decreased concentration of Ca but uptake increased upto 1.0 per cent FYM over control. The Mg concentration and uptake decreased significantly with increased amount of Fe. Application of FYM also decreased Mg concentration but its uptake increased upto 1.0 per cent FYM and then decreased.Iron concentration and uptake increased upto 2 per cent FYM and then decreased. Whereas concentration of Fe decreased with increased amount of applied Fe but its uptake increased nonsignificantly with increased amount of added Fe.Managenese concentration and uptake decreased significantly with increased amount of applied Fe. Managenese concentration increased upto 0.5 per cent FYM but its uptake continued increasing with increasing amounts of applied FYM.  相似文献   

2.
Summary The effect of CaCO3 and iron on the availability of iron, manganese phosphorus and calcium was studied in the greenhouse on pea (Pisum sativum L.) crop on a light textured soil, which was marginal in exchangeable calcium. Addition of calcium carbonate caused significant increase in dry matter yield with no added iron at both the stages of crop growth. But yeild intended to decrease with 8% CaCO3 at 75 days of crop growth. Dry matter yield also increased with the addition of iron upto 10 ppm at 45 days and upto 5 ppm at 75 days. The iron concentration and uptake decreased with the increase in CaCO3 and increased with the application of iron at both the stages of crop growth. The application of iron and CaCO3 decreased concentration and uptake of phosphorus significantly at both the stages.Like phosphorus, concentration and uptake of manganese also decreased with the increase in added CaCO3 upto 8% and iron upto 20 ppm at 45 and 75 days. The concentration of calcium increased with the addition of CaCO3 to the extent of 50 and 40% with 8% CaCO3 at 45 and 75 days, while the uptake of calcium increased more than 3 folds at 45 days and more than 2 folds at 75 days. The concentration of calcium decreased with the application of iron upto 20 ppm but the uptake at 45 days increased upto 10 ppm and at 75 days upto 5 ppm and then decreased.The concentration of Fe, P and Ca decreased at 75 days and that of Mn increased while the uptake of all these nutrients increased at 2nd stage due to higher dry matter.  相似文献   

3.
Summary The effect of sampling technique upon the measurement of variation in nutrient (N, P, K, Ca and Mg) concentration was examined. Sampling and analytical precision over two years were indicated by coefficients of variation which ranged from 5.7 to 14.0 per cent for sampling error and 4.3 to 16.1 per cent for analytical error. Concentration of N, P and K in the leaves was found to be independent of sampling height. Ca and Mg concentrations, however, decreased with increased height on the crown. The differences in concentration between the bottom and top of the crown were 15 and 19 per cent for Ca and Mg respectively. The nutrient concentrations of samples taken from basal coppice shoots were significantly different from those in the true crown. Nutrient concentration was independent of aspect. Leaf area varied throghout the season, but the largest leaves were always at the base of the crown and the smallest at the top.  相似文献   

4.
Summary The net uptake of Na, K, Li, and Ca or Mg by excised barley roots was studied from bi-ionic and tri-ionic bentonite suspensions. The net uptake of Li from Li-Ca system progressed linearly with progressive Li levels and was related to the concentration of soluble lithium. Calcium in this system was taken up only at the 100 per cent Ca level. At lower Ca levels calcium was lost from the roots to the suspensions. In K-Mg and Na-Mg systems the net uptake of Na or K by the excised roots was related to the concentration of the cation in the solution phase. Magnesium uptake took place at 80 and 100 per cent Mg levels. It was much less than that of K or Na at similar levels. At lower levels of Mg the roots lost some of their initial Mg contents to the suspensions. In the Na-K-Mg system magnesium was not taken up by the excised roots. Sodium uptake was not practically affected by the Mg level, but K uptake was greatly enhanced by magnesium.  相似文献   

5.
Summary The seasonal fluctuation of N, P, K, Ca, Mg, Fe, Mn, Mo, and Co, in leaves, roots and nodules of 40–50 year oldAlnus glutinosa trees growing at four different locations along the banks of the Tormes river, in the province of Salamanca, was studied. Also, the evolution of the soil organic matter under the trees sampled was evaluated. The data obtained for the various nutrient elements in the three plant parts are statistically treated at the significance levels of 99–95 per cent, and some remarks as to the nutritional status of the European alder in respect to the nutrients and its contribution to soil nutrient-cycling are provided. A positive correlation was found between N–P, N–K, N–Mg, and N–Mo, in leaves, and between N–P, N–K, N–Fe, N–Mn, and N–Mo in root nodules. In roots only, no significance at any level was obtained between N and any of the elements analyzed.  相似文献   

6.
采用微波消解法处理旱芹根、茎、叶,并用火焰原子吸收法测定其中的Na、K、Ca、Mg、Fe、Mn、Zn、Cu 8种金属元素的含量。结果表明:旱芹中富含人体必需的Na、K、Mg、Fe、Ca等元素,各元素在不同部位含量有一定差异。Fe元素在旱芹根中含量为883.57μg.g-1,明显高于茎和叶;Ca、Zn和Mn元素在旱芹叶中的含量分别为11 103.74,214.04,88.07μg.g-1,明显高于茎和根;K、Na和Mg元素在旱芹茎中的含量高于根和叶中,Cu元素含量在各部位差异不大。方法的加标回收率为96.8%~105.8%,相对标准偏差(RSD)≤3.36%。  相似文献   

7.
A pot experiment with maize cv. Limac was conducted to investigate the influence of BAS 110.. W, a plant growth regulator (PGR), on root and shoot development and nutrient uptake. The PGR was applied via the soil with 0, 5, 10, 20, and 40 mg a.i. per pot. Shoot dry matter production was reduced to a higher degree than root length, resulting in a higher root-shoot ratio (RSR) of the treated plants. Shoots of treated plants contained higher concentrations of N, P, Ca, Mg, and unchanged K concentrations. The alterations in concentration could be explained by the changes in RSR induced by the plant growth retardant. The effect was strongest with P (+40%) which was limited by soil supply. N, Ca, and Mgconcentrations were positively influenced (+20%), there was no increase for Kvs RSR.  相似文献   

8.
Bernstein , Leon . (U. S. Salinity Lab., Riverside, Calif.) Osmotic adjustment of plants to saline media. II. Dynamic phase. Amer. Jour. Bot. 50(4): 360–370. Illus. 1963.—The time-course of osmotic adjustment in bean and pepper plants to increased salinity of the medium was determined by periodic sampling of plants following salt additions to the medium. Bean plants adjusted to increases of 1 atm OP within a day, the adjustment in roots occurring primarily at night following salt addition at 6 pm , whereas leaves and stems made most of their adjustment in the daytime. Pepper plants did not adjust completely to 1.5 atm NaCl additions in 48 hr, but OP increased by about the same amount in both species (0.5—1.0 atm per day). Diurnal fluctuations in OP of leaves and stems of both species and in roots of pepper were matched by parallel fluctuations in K concentrations. Added NaCl caused increased concentrations of K in leaves and stems which were more or less replaced by more slowly absorbed ions, Ca and Mg in bean leaves and Na in bean stems. Other salts produced comparable immediate effects on K level, but K was replaced more rapidly if the cation added was readily accumulated by the bean (Ca). In roots, Na uptake predominated if Na salts were added but K uptake was important on the CaCl2 treatment. The K effects suggest a passive distribution of K between the cell and the medium.  相似文献   

9.
Summary The effects of Zn, P, N and CaCO3 on tryptophan concentration in rice grain were studied in greenhouse at Haryana Agricultural University. Zinc application upto 20 ppm increased tryptophan concentration in rice grain. Zn-EDTA gave highest increase followed by ZnSO4 and then ZnO. Liming at the rate of 4 and 8 per cent decreased tryptophan concentration significantly. Phosphorus application upto 100 ppm also decreased tryptophan significantly but Zn in combination with P increased tryptophan and overcame negative effect of P. Nitrogen application upto 120 ppm increased tryptophan concentration. There was positive interaction between Zn and N. Ammonium sulphate gave highest tryptophan followed by ammonium nitrate and then urea. The tryptophan concentration ranged between 766 ppm and 2011 ppm in paddy grain. The lowest tryptophan concentration was in the plants treated with 8 per cent lime in absence of added Zn and highest with 10 ppm Zn through Zn-EDTA. Department of Soils.  相似文献   

10.
A pot culture experiment was conducted in loamy sand soil to study the effect of different levels of FYM and CaCO3 on the dry matter yield and nutrients uptake by oats. Application of different levels of CaCO3 (0, 2, 4 and 8%) and FYM (0, 0.5, 1,2%) resulted in significant increase in dry matter yield of oats. But, a little decrease in dry matter yield was obtained at 4% FYM. The interaction of FYM×CaCO3 was also significant on dry matter yield of oats. There was a significant decrease in the concentration and uptake of P with increased levels of applied CaCO3. But, application of FYM resulted in a significant increase in concentration and uptake of P. A significant increase in concentration and uptake of Ca was observed with the increasing levels of CaCO3. The concentration of Ca decreased with the increased application of FYM in the presence as well as in the absence of added CaCO3. However, at 0.5 and 1.0 percent FYM with 4 per cent CaCO3 a little increase in Ca concentration was recorded. The Mg concentration in oat decreased significantly with the increasing levels of CaCO3 and FYM. The effect of CaCO3 levels was more pronounced in the absence as well as in the presence of FYM. The Mg uptake followed a different pattern. At 0 and 2% CaCO3 and application of FYM @ 1 per cent the Mg uptake increased but then it decreased with increasing levels of FYM and CaCO3 both alone as well as in the presence of each other. The concentration and uptake of Mn decreased with increasing levels of applied CaCO3. However, in the absence of CaCO3, the application of FYM increased the concentration and uptake of Mn in oats. In the presence of CaCO3, Mn concentration decreased at all levels of FYM application but at 8 per cent CaCO3 there was a slight increase in Mn concentration with 0.5, 2 and 4 percent FYM. Iron concentration and uptake was also affected adversely by increasing levels of CaCO3 but FYM application removed the harmful effect of CaCO3 to some extent.  相似文献   

11.
Chromium uptake and tolerance by Mexican Palo Verde (Parkinsonia aculeata) (MPV) was studied in a six-month experiment with Cr(III) and Cr(VI) at 60 and 10 mg kg(-1), respectively. Chromium and nutrient uptake were determined by ICP-OES and changes in macromolecules were studied by infrared microspectroscopy (IMS). In the Cr(VI)-treated plants, chromium concentration increased in the roots only through the third month, while translocation to stems increased constantly throughout the six months. Cr(III) applications decreased the amount of Zn in leaves and stems (p < or = 0.05). Cr(VI) increased P and S in all plant tissues and increased Ca in roots, but decreased Ca in stems and leaves, and Mg in roots and stems. Cr(III) decreased P in stems and leaves, while both Cr ions decreased K in all MPV tissues. Relative to untreated plant tissue, the IMS revealed significant changes at 1730 cm(-1) and 845 cm(-1). Changes at 1730 cm(-1) indicated that the cortex and xylem of Cr-treated plants were more proteinaceous. Changes at 845 cm(-1) revealed higher lignifications in cortex. However, at the stem level, Cr(VI) decreased lignin deposition in xylem. The data showed that MPV could be useful in the phytoremediation of Cr in moderately impacted soils.  相似文献   

12.
We investigated the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, and Hf) and the effect of Ca on their uptake in carrots (Daucus carota cv. U.S. harumakigosun) by the radioactive multitracer technique. The experimental results suggested that Na, Mg, K, and Rb competed for the functional groups outside the cells in roots with Ca but not for the transporter-binding sites on the plasma membrrane of the root cortex cells. In contrast, Y, Ce, Pm, and Gd competed with Ca for the transporters on the plasma membrane. The selectivity, which was defined as the value obtained by dividing the concentration ratio of an elemental pair, K/Na, Rb/Na, Be/Sr, and Mg/Sr, in the presence of 0.2 and 2 ppm Ca by that of the corresponding elemental pair in the absence of Ca in the solution was estimated. The selectivity of K and Rb in roots was increased in the presence of Ca. The selectivity of Be in roots was not affected, whereas the selectivity of Mg was increased by Ca. These observations suggest that the presence of Ca in the uptake solution enhances the selectivity in the uptake of metabolically important elements against unwanted elements.  相似文献   

13.
Summary Flax growing on a calcareous soil in the greenhouse developed Mn toxicity symptoms. The toxicity was eliminated by application of 2 ppm FeEDDHA-Fe. FeEDDHA had major effects on distribution of Mn, Zn, Fe and P among selected plant parts. Application of the chelate reduced Mn concentration in older leaves, the tissue most susceptible to Mn toxicity, associated stem tissue, plant tops, and roots from 2295 to 133 ppm, 62 to 7 ppm, 550 to 34 ppm, and 42 to 34 ppm, respectively. Analysis of older leaves is recommended for diagnosing Mn toxicity in flax.FeEDDHA reduced Zn concentration in plant tops and this was chiefly reflected in greatly reduced leaf concentrations, especially in older leaves. FeEDDHA increased plant Fe concentration and the effect was greatest in root and older leaf tissues. The overall effect of FeEDDHA on P concentration was small but large increases occurred in younger leaf tissue due to application of the chelate. Relative distributions of K, Na, Ca, and Mg among plant parts were only slightly affected by FeEDDHA.  相似文献   

14.
Summary A study conducted in pots to evaluate the effect of different Mg/Ca ratios (2, 4, 8 and 16) and electrolyte concentrations (20 and 80 meq/l) at SAR 10 in irrigation water on the nutrient uptake and yield of wheat crop in two soils revealed that the average grain and dry matter yields of wheat decreased significantly with an increase in Mg/Ca ratio in irrigation water, but the magnitude of decrease was greater at higher electrolyte concentration than at lower electrolyte concentration. The concentration of Na in both straw and grain of wheat increased and that of K decreased with an increase in Mg/Ca ratio and electrolyte concentration of irrigation water, which led to higher Na/Ca and Na/K ratios in the plant. Further, the concentration of Ca and Mg both in straw as well as in grain increased with increasing electrolyte concentration of the irrigation water. An increasing proportion of Mg in saline irrigation water resulted in decreased concentration of Ca and increased concentration of Mg in both straw and grain of wheat crop. It was also noticed that the increasing proportion of Mg over Ca in the poor quality irrigation water increased the P content of both straw and grain of wheat crop.  相似文献   

15.
Summary The availability of Ca from different levels of gypsum and calcium carbonate in a non-saline sodic soil has been investigated. Different levels of tagged gypsum (Ca45SO4.2H2O) and calcium carbonate (Ca45CO3) (i.e. 0, 25, 50, 75, and 100 per cent of gypsum requirement) were mixed thoroughly in 3.5 Kg of a non-saline alkali soil (ESP, 48.4; ECe, 2.68 millimhos/cm). Dhaincha (Sesbania aculeata) — a legume and barley (Hordeum vulgare L.) — a cereal were taken as test crops. Increasing levels of gypsum caused a gradual increase in the yield of dry matter, content of Ca and K in the plant tops and Ca:Na and (Ca+Mg):(Na+K) ratios in both the crops. Application of calcium carbonate caused a slight increase in the dry matter yield, content of Ca and Mg and Ca:Na and (Ca+Mg):(Na+K) ratios in barley, however, in case of dhaincha there was no such effect. Gypsum application caused a gradual decrease in the content of Na and P in both the crops. Total uptake of Ca, Mg, K, N and P per pot increased in response to gypsum application. The effect of calcium carbonate application on the total uptake of these elements was much smaller on dhaincha, but in barley there was some increasing trend.Increasing application of tagged gypsum and calcium carbonate caused a gradual increase in the concentration and per cent contribution of source Ca in both the crops, although, the rate of increase was considerably more in dhaincha. The availability of Ca from applied gypsum was considerably more than that from applied calcium carbonate. Efficiency of dhaincha to utilize Ca from applied sources was considerably more (i.e. about five times) than that of barley  相似文献   

16.
Iron (Fe) deficiency chlorosis is a common and severe nutritional deficiency in plants, and nitric oxide (NO) is an important signaling molecule in regulating Fe homeostasis in plants. We studied the effect of sodium nitroprusside (SNP, an NO donor) on Fe uptake, translocation, storage, and activation in a greenhouse. The concentrations of active Fe, total Fe, and the ratio of active Fe to total Fe, the activities of key enzymes, and chlorophyll concentration were determined, and resistance to oxidative stress and mineral element distribution in peanut plants grown in Fe sufficiency and Fe deficiency (an absence of Fe and low level of Fe concentration) conditions were also investigated. The results showed that NO significantly increased the concentration of active Fe and the ratio of active Fe to total Fe in Fe-deficient plants, and increased active Fe concentration in leaves and stems of Fe-sufficient plants. NO application also increased Fe translocation from roots to the shoots and the accumulation of Fe in cell organelles and the soluble fraction in leaves, especially in the low-level Fe concentration condition, thus increased available Fe and chlorophyll concentration in leaves of Fe-deficient plants. The activities of key enzymes were regulated by NO, which effectively mitigated oxidative damages by enhancing the activities of antioxidant enzymes (SOD, POD, CAT), increasing H+-ATPase and Ca2+-ATPase activities to balance the ion (Fe, Ca, Mg and Zn) uptake and distribution in Fe-deficient plants. However, NO application had no obvious effect on these variables in Fe-sufficient plants. These results indicated that NO application can improve Fe uptake, translocation, and activation of related enzymes in Fe-deficient plants, thus mitigating the adverse effect of Fe deficiency.  相似文献   

17.
The effects of varying CaSO4 and NaCl levels on the nutrient content ofLeucaena leucocephala were established by examining the concentrations of Na, Ca, Cl, K and Mg in leucaena roots, stems and leaves. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM), in randomized blocks with five replications. Leucaena excluded sodium from stems and leaves when NaCl concentration was 50 mM or less. Sodium uptake decreased as CaSO4 concentration increased. Calcium uptake was affected by NaCl concentration when substrate CaSO4 concentration was 0.5 mM. At this level, 100 mM NaCl caused a marked decrease in leaf calcium and a marked increase in leaf Cl. In all other treatments, Cl uptake was not affected by CaSO4 concentration. Potassium uptake was strongly depressed as NaCl concentration increased at low Ca concentration, but this effect was offset at high Ca. Magnesium uptake decreased as CaSO4 levels increased.  相似文献   

18.
Magnesium (Mg) is known as one of the essential nutrients for higher plants; yet, the preliminary physiological responses of field crops to its deficiency or excess, particularly to its interaction with potassium (K), remain largely unknown. In this study, we observed that Mg deficiency in rice (Oryza sativa) [less than 1.1 mg g?1 dry weight (DW) in the shoot] resulted in significant reduction in shoot biomass, decrease in total chlorophyll concentration and net photosynthetic rate and reduction in activities of both nitrate reductase [NR; enzyme classification (EC) 1.6.6.1] and glutamine synthetase (EC 6.3.1.2) in the leaves. However, the Mg‐deficient plant contained higher starch in the leaves, and partitioned larger biomass into roots. Excess of Mg (more than 3.0 mg g?1 DW in the shoot), together with low K supply, suppressed NR activity and decreased concentration of soluble sugar in the leaves. There were great antagonistic and moderately synergistic effects between K and Mg, but the effects of K were much more significant than those of Mg on their uptake and translocation, NR activity and net photosynthetic rate in the leaves. The optimum weight ratio of K to Mg ranged between 22 and 25 in the leaves at tillering stage. Mg deficiency was not compensated for by moderate supply of K but was aggravated by excess supply of K, suggesting specific roles of Mg in both dry matter production and partition of carbon assimilates in rice.  相似文献   

19.
Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   

20.
There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号