首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarised optical microscopy (POM) and X-ray diffraction techniques were applied to intercellular lipids extracted from wool to study their structural arrangement in order to determine their role in the diffusion properties of wool fibre. Intercellular wool lipids (IWL) arranged as concentrated liposomes were shown to be a good intercellular lipid model, allowing their study by X-ray diffraction techniques. The results confirm that intercellular lipids of wool fibre are organised in a lamellar structure of 5.0–8.0 nm width, termed β-layer, which had been assumed to be lipids arranged as a bilayer. Structurally, internal wool lipids are distributed at least in two domains at low temperatures: an ordered phase made up of ceramides and free fatty acids (FFA) alone, arranged in crystal orthorhombic states separately, and a liquid crystal state when mixed together. At 40 °C there is a reversible phase transition produced by the melt of the crystal orthorhombic states, whereas the liquid crystal state remains until 65 °C.  相似文献   

2.
Electron microscopic and biochemical investigations of developing embryonic mustard cotyledons provided no evidence for the widely accepted hypothesis that oleosomes of fat-storing tissues originate from the endoplasmic reticulum and are surrounded by a unit- or half-unit membrane. In contrast, it was found that the first lipid droplets appear (about 12–14 d after pollination) in the ground cytoplasm near the surface of plastids. Subsequently these nascent lipid droplets, which lack any detectable boundary structure at this stage, become encircled by a cisterna of rough endoplasmic reticulum. At the same time an osmiophilic coat of about 3 nm thickness becomes detectable at the lipid/water interface. In the cotyledon cells of germinating seedlings a centrifugally moving front of fat degradation moves from the central vacuoles(s) towards the cell periphery, leaving behind collapsed coats of oleosomes which are depleted of their lipid contents (saccules). Although saccules appear tripartite in cross section, they are structurally different from endoplasmic reticulum membranes. The oleosome coats can be isolated from oleosome preparations by extracting lipids with organic solvents. The coat material is insoluble in detergents like Triton X-100 or deoxycholate and shows a tripartite, lamellar structure (similar to collapsed saccules) under the electron microscope. Upon dissolution with dodecylsulfate, polyacrylamide gel electrophoresis revealed a polypeptide composition (9 major bands) which is qualitatively different from that of the endoplasmic reticulum membrane. Also the buoyant densities of defatted oleosome coats and defatted endoplasmic reticulum membranes are very different. It is concluded that oleosome lipids accumulate in the ground cytoplasm and are bounded by a lamellar structure originating de novo from proteinaceous elements synthesized by specific regions of the endoplasmic reticulum.Abbreviation ER endoplasmic reticulum  相似文献   

3.
Polar lipids such as monoglycerides are able to form an inverse micellar solution, an L2-phase, of water aggregates in triglyceride oil. This thermodynamically stable liquid phase also fulfils the criteria used to identify microemulsions. The structure of this phase at various compositions has been studied by freeze-fracture electron microscopy. The freeze-fracture images show differently oriented stacks of small smooth lamellae. These observations are consistent with X-ray studies indicating curved lipid bilayers arranged in parallel, separating similarly curved aqueous layers of finite size, forming a higly dynamic structure of ‘medium-range’ order. Studies from different compositions in the ternary systems over the L2-phase in binary monoglyceride/water systems to the pure monoglyceride in the liquid state indicate the occurrence of the same type of lamellar structure, which is proposed to be characteristic for polar lipids forming liquid-crystalline phases in contrast to less polar lipids exhibiting an amorphous structure in the liquid state.  相似文献   

4.
Phosphofructokinase (Pfk1, EC 2.7.1.11) plays a key regulatory role in the glycolytic pathway. The combination of X-ray crystallographic and biochemical data has provided an understanding of the different conformational changes that occur between the active and inhibited states of the bacterial enzyme, and of the role of the two bacterial effectors. Eukaryotic phosphofructokinases exhibit a far more sophisticated regulatory mechanism, they are more complex structures regulated by a large number of effectors (around 20). Saccharomyces cerevisiae Pfk1 is an 835 kDa hetero-octamer which shows cooperative binding for fructose-6-phosphate (F6P) and non-cooperative binding for ATP. The 3D structure of the F6P-bound state was obtained by cryo-electron microscopy to 1.1 nm resolution. This electron microscopy structure, in combination with molecular replacement using the bacterial enzyme has helped provide initial phases to solve the X-ray structure of the F6P-bound state 12S yeast truncated-tetramer. Biochemical and small-angle X-ray scattering (SAXS) studies had indicated that Pfk1 underwent a large conformational change upon Mg-ATP binding. We have calculated a reconstruction using reference-based 3D projection alignment methods from 0 degrees images acquired from frozen-hydrated preparations of the enzyme in the presence of Mg-ATP. The ATP-bound structure is more extended or open, and the calculated radius of gyration of 7.33 nm (7.0 nm for F6P) is in good agreement with the SAXS data. There is a substantial decrease in the rotational angle between the top and bottom tetramers. Interestingly, all these changes have arisen from a reorientation of the alpha- and beta-subunits in the dimers. The interface region between the alpha- and beta-subunits is now approximately half the size of the one in the F6P-bound structure. This is the first time that the 3D structure of a eukaryotic Pfk1 has been visualized in its T-state (inhibited-state).  相似文献   

5.
The absorption spectrum of chloroplasts changes as a function of temperature. As chloroplasts are cooled from room temperature to 10°C there are increases in absorption at 675, 500 and 436 nm, plus a small decrease at 685 nm. As the chloroplasts are heated to 34°C there are decreases in absorption at 675, 500 and 436 nm plus increases in absorption at 690 and 400 nm. It is concluded that the temperature dependent change in phase of the membrane lipids (solid to liquid crystal state) modifies the state of chlorophyll aggregation.  相似文献   

6.
The three-dimensional structure of the regular surface layer of Sporosarcina ureae has been determined to a resolution of 1.7 nm by electron microscopy and image reconstruction. The S-layer has p4 symmetry, a lattice constant of 12.9 nm, and a minimum thickness of 6.6 nm. The reconstruction reveals a distinct domain structure: a massive core, arms connecting adjacent unit cells, and spurs which make contact at the subsidiary fourfold symmetry axes. In the z-direction the domains appear to be arranged in three planes, creating two entirely different surface reliefs. The S-layer has a complex pattern of pores and gaps that are 2 to 3 nm wide. In addition, the secondary-structure composition has been determined by infrared spectroscopy: about 35% of the polypeptide appears to have a beta-structure conformation.  相似文献   

7.
Lipid-protein interactions in reconstituted band 3 preparations were investigated by using spin-labeled lipids in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Purified erythrocyte band 3 was reconstituted into egg phosphatidylcholine liposomes at high protein density with preservation predominantly of the dimeric state. Lipid-protein associations were revealed by the presence of a component in the EPR spectra that, when compared to spectra obtained from protein-free bilayers, indicated that lipid chain motions are restricted by interactions with the protein. From the fraction of the motionally restricted component obtained from the phosphatidylcholine spin-label, a value of 64 +/- 14 annular lipids per band 3 dimer was obtained. This agrees with a value of 62 for the number of lipids that may be accommodated around the electron density map of a band 3 dimer. Selectivity of various spin-labeled lipids for the protein revealed that androstanol had a lower affinity for the band 3 interface, whereas a distinct preference was observed for the negatively charged lipids phosphatidylglycerol and stearic acid over phosphatidylcholine. This preference for negatively charged lipids could not be screened by 1-M salt, indicating that electrostatic lipid-protein interactions are not dominant. Estimates of annular lipid exchange rates from measured acyl chain segmental motions suggested that the rate of exchange between bilayer and boundary lipids was approximately 10(6) s(-1), at least an order of magnitude slower than the rate of lipid lateral diffusion in protein-free bilayers.  相似文献   

8.
9.
NADH: ubiquinone reductase (electron transfer complex I) has been isolated from Neurospora crassa mitochondria as a monodisperse protein-phospholipid-Triton X-100 complex (1:0.04:0.15, by weight). The enzyme is in the monomeric state, has a protein molecular weight of 610,000 and consists of about 25 different subunits. Membrane crystals of the enzyme complex have been prepared by adding mixed phospholipid-Triton X-100 micelles and then removing the Triton by dialysis. Diffraction patterns of the negatively stained membrane crystals extend to about 3.9 nm, with a unit cell size of 19 nm X 38 nm and gamma = 90 degrees. The two-sided plane group packing corresponding to pgg is p22(1)2(1). By combining four sets of tilted views, a low-resolution three-dimensional structure of the protein has been calculated. The structure shows that NADH: ubiquinone reductase extends 15 nm across the membrane, projecting 9 nm from one membrane side and 1 nm from the opposite side. Only about one-third of the total protein mass is located in the membrane. The structure of NADH: ubiquinone reductase is compared with that of ubiquinol: cytochrome c reductase determined by electron microscopy of membrane crystals.  相似文献   

10.
The internal lipids were extracted from untreated hair without surface lipids. Liposomes were formed with the internal lipids at different hydration levels to determine the organization of these lipids and the influence of the water content on the lamellar structure of the hair fibres by X-ray Scattering (SAXS). Two structures of hair lipids were observed at 4.5 and approximately 9.0nm with a different behaviour as a function of water content: the largest bilayer being the one that showed a capacity to retain water inside its structure. SAXS was also applied directly to three samples: a packed swatch of hair fibres at 60% RH, fibres soaked in water and delipidized fibres. Only the lamella at 9.0nm was slightly affected by water content. Moreover, there was a small diminution in intensity probably due to a high permeability of wet fibres which could give rise to a disorder of the lipid structure. These two lamellar rearrangements are probably made up of lipids with a different and specific hydrophilic/hydrophobic balance.  相似文献   

11.
The fluorescent probe Prodan has been widely used as a probe of model and biological membranes. Its fluorescent maxima in phospholipid bilayers vary as a function of phase state, with maxima at 485 for the liquid crystal Lalpha, 435 nm for the gel L'beta, and 507 nm for the interdigitated gel LbetaI phase, with excitation at 359 nm. These spectral changes have been used for the detection of phase changes among these phases. In the present study, the fluorescent properties and partition coefficients of Prodan in model membranes of phosphatidylcholines and phosphatidylethanols have been studied as a function of lipid phase state and cholesterol content. It is shown that the Prodan spectrum in the presence of cholesterol no longer reflects the known phase state of the lipid; in each phase state, the presence of cholesterol leads to a spectrum with the maximum at 435 nm, characteristic of the noninterdigitated gel phase. The partition coefficient of Prodan into these lipids also varies with the phase state, giving values of 0.35 x 10(4) in the interdigitated gel, 1.8 x 10(4) in the noninterdigitated gel, and 7. 6 x 10(4) in the liquid crystal phase. In the presence of cholesterol these partition coefficients are increased to 13 x 10(4) for the liquid crystal and the gel phase, and 5.1 x 10(4) in the presence of 100 mg/ml ethanol. These results suggest that Prodan has preferential interactions with cholesterol, and is thus not a randomly distributed fluorescent reporter probe in membranes containing cholesterol. These results suggest that Prodan should be used only with great caution in complex lipid mixtures, particularly biological membranes.  相似文献   

12.
T Walz  B L Smith  P Agre    A Engel 《The EMBO journal》1994,13(13):2985-2993
Water-permeable membranes of several plant and mammalian tissues contain specific water channel proteins, the 'aquaporins'. The best characterized aquaporin is CHIP, a 28 kDa red blood cell channel-forming integral protein. Isolated CHIP and Escherichia coli lipids may be assembled into 2-D crystals for structural analyses. Here we present (i) a structural characterization of the solubilized CHIP oligomers, (ii) projections of CHIP arrays after negative staining or metal-shadowing, and (iii) the 3-D structure at 1.6 nm resolution. Negatively stained CHIP oligomers exhibited a side length of 6.9 nm with four-fold symmetry, and a mass of 202 +/- 3 kDa determined by scanning transmission electron microscopy. Reconstituted into lipid bilayers, CHIP formed 2-D square lattices with unit cell dimensions a = b = 9.6 nm and a p422(1) symmetry. The 3-D map revealed that CHIP tetramers contain central stain-filled depressions about the fourfold axis. These cavities extend from both sides into the transbilayer domain of the molecule leaving only a thin barrier to be penetrated by the water pores. Although CHIP monomers behave as independent pores, we propose that their particular structure requires tetramerization for stable integration into the bilayer.  相似文献   

13.
猪瘟病毒的形态结构与形态发生   总被引:8,自引:0,他引:8  
建立了猪瘟病毒(CSFV)弱毒疫苗Thiverval株(T株)与中 国兔化弱毒疫苗C株在MPK细胞中的感染模式。使用MPK细胞增殖CSFV,其病毒滴度明显提高,从而为应用电镜超薄切片技术研究猪瘟病毒的形态结构与形态发生提供了可能性。猪瘟病毒呈圆形颗粒,直径约为70nm。其内部是电子致密的核心,直径约为40nm,有时呈六角形;外有包膜包裹。在CSFV感染的MPK细胞质中,可观察到处于不同发育阶段的子代病毒粒子。此外,猪瘟病毒的感染能够引起某些宿主细胞超微结构上的变化。  相似文献   

14.
The photoreduction of 1,4-benzoquinone (BQ), 1,4-naphthoquinone (NQ), 9,10-anthraquinone (AQ) and several derivatives, e.g. dimethylBQ, trimethylBQ, duroquinone, bromoNQ, methoxyNQ, methylAQ and dimethylAQ in acetonitrile-water by ascorbate was studied by time-resolved UV-vis spectroscopy using 20 ns laser pulses at 308 nm and continuous 254 nm irradiation. The semiquinone radical (*QH/Q*(-)) is formed after H-atom transfer from ascorbate to the quinone triplet state. The rate constant for quenching is k(q)=(2-9) x 10(9) M(-1) s(-1). Termination of the radicals takes place in the micros-ms range. The results are compared with those initiated by electron transfer from DABCO under similar conditions, where the k(q) values are similar, but the termination of Q*(-) takes place by electron back transfer not yielding hydroquinones. Specific properties of the quinone triplet state, e.g. self-quenching, nucleophilic water addition and the effects of structure are discussed.  相似文献   

15.
Two-dimensional crystalline porin sheets were obtained by reconstitution of monodisperse protein trimers and phospholipids (dimyristoylphosphatidylcholine) by detergent dialysis, analogous to the reconstitution method used for functional tests (Schindler & Rosenbusch, 1981). Three different packing arrangements were observed: two were hexagonal (with p3 symmetry and lattice constants of 9.3 nm and 7.9 nm), and one rectangular (a = 7.9 nm, b = 13.9 nm). The different crystals could be correlated to phospholipid-to-protein weight ratios of 0.16 to 0.72. At the higher ratio, large hexagonal lattices predominated. Higher lipid ratios did not reveal other crystal forms. The packing arrangement of the large hexagonal form appears very similar to the hexagonal habit of three-dimensional crystal forms (Garavito et al., 1983). The shape of the stain-penetrated triplet indentations appeared conserved in the crystal forms to a resolution of 2.2 nm. The mass distribution between triplets, however, were significantly different. They are likely to correspond primarily to lipids. Mass determinations of unstained porin by scanning transmission electron microscopy showed that unit cells consisted of single trimers. The mass found (100,000 daltons) is in good agreement with the value obtained by sedimentation equilibrium analysis.  相似文献   

16.
Keratin filament polypeptides were purified from calf hoof stratum corneum with the aim of studying the in vitro assembly process and determining structural parameters of reconstituted filaments. Anion exchange chromatography was used to obtain the most complete fractionation and identification of the acidic and basic components in the purified polypeptide mixture to date. The reassembly products of the fractionated components were investigated by electron microscopy. Fully reconstituted filaments yield homogeneous solutions, and values of 9.8 nm for the filament diameter and 25 kDa/nm for the mass per unit length (M/L) were obtained by X-ray solution scattering. The structures formed in solution at various stages of filament assembly were not sufficiently homogeneous to be studied by this technique. X-ray diffraction patterns from native stratum corneum display strong maxima at 3.6 and 5.4 nm. Contrary to previous reports, these maxima do not appear to be due to lipids since they are also observed with delipidated rehydrated specimens. A series of weak maxima is also detected in the patterns of dry tissue. The absence of these features in the patterns of reconstituted filaments suggests that, in contrast to some electron microscopic observations, there are no prominent regularities in the structure of calf hoof keratin filaments.  相似文献   

17.
Supernatant fractions obtained after high speed centrifugation (1 h at 100 000 X g) of homogenates from whole ovaries, oocytes as well as from separated nuclei and ooplasms of Xenopus laevis contain distinct 22 S particles which have been purified and characterized by sucrose gradient centrifugation, ion exchange chromatography on DEAE-Sephacel and fast protein liquid chromatography (FPLC). The purity of the particle fraction has been assessed by electron microscopy as well as one- and two-dimensional gel electrophoresis. The particles appear as hollow cylinders of 10 nm outer diameter and 16 nm length, showing a composition of four stacked annuli which often reveal 6 symmetrically distributed granular subunits of approximately 3 nm diameter. Biochemically the particles are characterized by a group of 12 polypeptides with Mr values from 22 000 to 30 000 which in urea-denatured state markedly differ in their isoelectric values, ranging from pH 5.4 to ca. 8.2. Tryptic peptide mapping has demonstrated that all 12 major polypeptides are different. No evidence for association with nucleic acids has been found. The particles are very stable and resist treatments with low and high salt buffers, chelating agents, various non-denaturing detergents, and 3 M urea. They occur in relatively high concentrations both in the nucleus and in the cytoplasm. Structurally and compositionally identical cylinder particles have also been found in cultures of kidney epithelial cells of Xenopus and in human carcinoma (HeLa) cells, indicating that this is a rather widespread component of diverse cell types and species. The significance of this particle and its relationship to morphologically similar particles described in the literature is discussed.  相似文献   

18.
The temperature dependence of the kinetics of P700 redox transients in bean chloroplasts was studied. The flashes of white light with different duration (7 microseconds, 0.5 and 0.75 ms) were fired simultaneously with the background continuous far red light (lambda max = 707 nm). It was shown that the rate of P700+ reduction was temperature dependent and increased with the rise of the concentration of the reductants in the electron transport chain between photosystems. Photosystem 2 donates electrons to P700+ at temperatures from -5 to 45 degrees C under various modes of flash illumination. Experiments with spin labels showed that there were correlation between the physical state of lipids in the chloroplasts membrane and the rates of different steps of electron transport from photosystem 2 to photosystem 1--plastoquinone reduction by photosystem 2 and plastoquinol oxidation by photosystem 1. We assume that the rates of electron transport reaction of the plastoquinone shuttle are controlled by diffusion of plastoquinone and plastoquinole in the hydrophobic part of the thylakoid membrane. Additional evidence in support of that proposal was obtained from the temperature dependence of light induced spin label reduction which occurred due to its interaction with the plastoquinol of plastosemiquinone.  相似文献   

19.
The morphology and structural organisation of the complexes formed from the apoprotein of porcine high-density lipoprotein and dimyristoyl phosphatidylcholine (lecithin) have been studied using the technique of small-angle X-ray scattering. Scattering measurements made in solvents of varying electron density were interpreted in terms of a scattering-equivalent model for the structure of the complex. This model is described by an oblate ellipsoidal morphology with dimensions at 20 degrees C: major axis 11.0 nm, minor axis 5.5 nm. Within this overall shape the lipid hydrocarbon chains are organised in an apolar core whilst the lipid polar head groups and protein are located in a outer shell 0.85 nm in thickness. The oblate morphology demonstrates that the structure of the complex is directed by the fundamental bilayer organisation of the lecithin. The dimension of the minor axis (5.5 nm) indicates that phospholipid hydrocarbon chains are orientated perpendicular to the interface.  相似文献   

20.
X-ray diffraction methods were used to characterize the thermotropic polymorphism exhibited by aqueous dispersions of a homologous series of 1,2-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols. Upon cooling from temperatures at which the acyl chains of these lipids are melted, all of these compounds form structures that exhibit both low-angle and wide-angle diffraction patterns consistent with the formation of lamellar L beta gel phases. After a suitable protocol of low-temperature annealing, complex diffraction patterns consistent with the formation of highly ordered, lamellar, crystal-like phases are obtained. These patterns are similar for all of the compounds studied, suggesting that the unit cell structure is invariant. The assumption that the unit cell structure is invariant permits the assignment of phases to the diffraction orders, thereby making possible the construction of electron density profiles. These electron density profiles indicate that the crystal-like phases of these lipids are poorly hydrated structures with the hydrocarbon chains inclined at 35 degrees to the bilayer normal. The diffraction patterns of the crystal-like phases of these lipids changed abruptly at the calorimetrically determined phase transition temperatures to those characteristic of either lamellar liquid crystalline phases (N less than or equal to 17) or inverted nonbilayer phases. With these X-ray diffraction data we demonstrate that, at elevated temperatures, the shorter chain homologues (N less than or equal to 16) form cubic phases of the Pn3m space group, whereas the longer chain compounds form inverted hexagonal phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号