首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic DNA linkers containing a single mismatched nucleotide (C:A) are repaired without bias at high efficiency when introduced into mammalian cells on a SV40 shuttle vector. From the pattern of repair in vectors containing multiple linkers, it appears that DNA synthesis following mismatch excision can replace a length of DNA as short as 40 nucleotides. Furthermore, results from the introduction of linker molecules containing combinations of single-strand nicks suggest that transient unsealed nicks do not drive the direction of mismatch repair in mammalian cells, as has previously been proposed.  相似文献   

2.
The completion of excision repair patches in human cells, following UV irradiation, was compared to the refolding of these regions into nucleosomes. Incomplete repair patches were detected by their enhanced sensitivity to exonuclease III. This enhanced sensitivity was due to the presence of gaps (or displaced parental strands) at the 3' end rather than unligated nicks, indicating that ligation occurs rapidly after repair synthesis is completed. Different rates of completion were achieved by treatment with the inhibitors hydroxyurea and sodium butyrate, as well as by using a (partially) ligase-deficient human cell strain. Hydroxyurea caused a marked decrease in both the rate of completion and the level of repair incorporation in all three cell types studied, while sodium butyrate yielded different effects in each cell type. In each case, however, a decrease in the rate of repair patch completion resulted in a concomitant decrease in the level of nucleosome formation. To determine the temporal relationship of these two events, the levels of repair-incorporated nucleotides in isolated 146-base pair nucleosome core DNA were compared on native and denaturing gels. The data indicate that little (or no) nucleosome formation occurred in the nascent DNA regions prior to ligation regardless of the cell type or treatment used. Furthermore, comparison of the fraction of unligated repair patches and the fraction of repair patches in a nonnucleosomal state indicated that in the absence of inhibitors there was a significant time lag between ligation and nucleosome formation. This lag time, however, decreased when cells were treated with hydroxyurea. Thus, the formation of nucleosomes in newly repaired regions of DNA occurred after the ligation step in all cases and these two features of the excision repair process are not "tightly coupled" events.  相似文献   

3.
Mismatch repair (MMR) proteins are important for antibody class-switch recombination (CSR), but their roles are unknown. We propose a model for the function of MMR in CSR in which MMR proteins convert single-strand nicks instigated by activation-induced cytidine deaminase (AID) into the double-strand breaks (DSBs) that are required for CSR. This model does not invoke any novel functions for MMR but simply posits that, owing to numerous single-strand nicks in the switch (S) regions of both DNA strands, when MMR proteins are recruited by U:G mismatches, they excise one strand of DNA and soon reach a nick on the opposite strand. This halts excision activity and creates a DSB. This model explains why B cells that lack either S mu and MSH2 or UNG and MSH2 cannot undergo CSR.  相似文献   

4.
Wang H  Hays JB 《The EMBO journal》2004,23(10):2126-2133
Mismatch-repair (MMR) systems promote genomic stability by correction of DNA replication errors. Thus, MMR proteins--prokaryotic MutS and MutL homodimers or their MutSalpha and MutLalpha heterodimer homologs, plus accessory proteins--specifically couple mismatch recognition to nascent-DNA excision. In vivo excision-initiation signals--specific nicks in some prokaryotes, perhaps growing 3' ends or Okazaki-fragment 5' ends in eukaryotes--are efficiently mimicked in vitro by nicks or gaps in exogenous DNA substrates. In some models for recognition-excision coupling, MutSalpha bound to mismatches is induced by ATP hydrolysis, or simply by binding of ATP, to slide along DNA to excision-initiation sites, perhaps in association with MutLalpha and accessory proteins. In other models, MutSalpha.MutLalpha complexes remain fixed at mismatches and contact distant excision sites by DNA looping. To challenge the hypothesis that recognition complexes remain fixed, we placed biotin-streptavidin blockades between mismatches and pre-existing nicks. In human nuclear extracts, mismatch efficiently provoked the initiation of excision despite the intervening barriers, as predicted. However, excision progress and therefore mismatch correction were prevented.  相似文献   

5.
This laboratory has recently reported the occurrence of DNA nicking at the onset of terminal skeletal myogenesis by using the technique of in situ nick translation (Dawson and Lough: Dev. Biol., 127:362-367, 1988). Because 1-beta-D-arabinofuranosylcytosine (araC), a cytocidal agent that is routinely used to removed dividing fibroblasts from myogenic cultures, inhibits DNA repair, it was of interest to determine whether araC treatment resulted in an accumulation of the endogenously created nicks. Thus, we have assessed the accumulation of DNA nicks in myotube cells during a 20 hour araC treatment period at the onset of terminal myogenesis (44-64 hours in vitro) by using three techniques: alkaline sucrose gradient density centrifugation, kinetic in situ nick translation, and cellular in situ nick translation. Although alkaline sucrose gradient centrifugation revealed no detectable nicking after 20 hours, kinetic in situ nick translation analysis revealed subtle but significant increases in DNA nicks caused by araC within 7 hours of drug application, and a 1.5-fold increase in DNA repair sites after 20 hours of drug treatment. That these observations reflected nicking specifically in myotube nuclei was determined by immunocytochemical localization of nicked sites after repair with a biotinylated nucleotide analog (biotin-11-dUTP). The effects of araC were only incompletely reversible, whether or not the drug was removed from the cultures, within 2 days of the treatment period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Human glioblastoma-derived cell line, T98G, is arrested in the G1 phase of the cell cycle when serum is deprived. Using this cell line, we investigated the relation between the cell cycle and DNA single-stranded breaks, "nicks," by an in situ nick-translation method. When T98G cells were cultured without serum for 60 h, many small cells with condensed chromatin and scanty cytoplasm appeared. These small cells that were immunohistochemically considered to be in the G0 or early G1 phase had many nicks in DNA. When serum was added, these small cells with nicks disappeared within 1 to 4 h. VP-16, a DNA topoisomerase II inhibitor, delayed the disappearance of these small cells with nicks. This indicated that the action of DNA topoisomerase II on the chromatin is required to repair nicks in T98G glioma cells and to promote the progression from the quiescent to the proliferating phase.  相似文献   

7.
DNA within a cell is organized with unrestrained torsional tension, and each molecule is divided into multiple individual topological domains. Psoralen photobinding can be used as an assay for supercoiling and topological domain size in living cells. Psoralen photobinds to DNA at a rate nearly linearly proportional to superhelical density. Comparison of the rate of photobinding to supercoiled and relaxed DNA in cells provides a measure of superhelical density. For this, in vivo superhelical tension is relaxed by the introduction of nicks by either ionizing radiation or photolysis of bromodeoxyuridine in the DNA. Since nicks are introduced in a random fashion, the distribution of nicks is described by a Poisson distribution. Thus, after nicking, the fraction of topological domains containing no nicks is described by the zero term of the Poisson distribution. From measurement of the number of nicks introduced in the DNA and the fraction of torsional tension remaining, an average topological domain size can be estimated. Using this logic, procedures were designed and described for measuring supercoiling and domain size at specific sites in eukaryotic genomes.  相似文献   

8.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.  相似文献   

9.
10.
Luo Y  Walla M  Wyatt MD 《DNA Repair》2008,7(2):162-169
Thymidylate synthase (TS) is an important target of several chemotherapeutic agents, including 5-FU and raltitrexed (Tomudex). During TS inhibition, TTP levels decrease with a subsequent increase in dUTP. Uracil incorporated into the genome is removed by base excision repair (BER). Thus, BER initiated by uracil DNA glycosylase (UDG) activity has been hypothesized to influence the toxicity induced by TS inhibitors. In this study we created a human cell line expressing the Ugi protein inhibitor of UNG family of UDGs, which reduces cellular UDG activity by at least 45-fold. Genomic uracil incorporation was directly measured by mass spectrometry following treatment with TS inhibitors. Genomic uracil levels were increased over 4-fold following TS inhibition in the Ugi-expressing cells, but did not detectably increase in UNG proficient cells. Despite the difference in genomic uracil levels, there was no difference in toxicity between the UNG proficient and UNG-inhibited cells to folate or nucleotide-based inhibitors of TS. Cell cycle analysis showed that UNG proficient and UNG-inhibited cells arrested in early S-phase and resumed replication progression during recovery from RTX treatment almost identically. The induction of gamma-H2AX was measured following TS inhibition as a measure of whether uracil excision promoted DNA double strand break formation during S-phase arrest. Although gamma-H2AX was detectable following TS inhibition, there was no difference between UNG proficient and UNG-inhibited cells. We therefore conclude that uracil excision initiated by UNG does not adequately explain the toxicity caused by TS inhibition in this model.  相似文献   

11.
Deoxyribonuclease IV, a 5'-3' exonuclease degrading double-stranded DNA from intra-strand nicks, has been purified from the chromatin of rat liver cells. The enzyme, which has an Mr of 58000, excises the apurinic (AP) sites from a depurinated DNA nicked 5' to these AP sites with the chromatin AP endonuclease. The excision is not the result of hydrolysis of the phosphodiester bond 3' to the AP sites since the excision product does not behave as deoxyribose 5-phosphate but as its 2,3-unsaturated derivative. This result suggests that, to remove the AP sites from the DNA nicked by an AP endonuclease, the chromatin deoxyribonuclease IV rather acts as a catalyst of beta-elimination.  相似文献   

12.
The dut mutants of Escherichia coli fail to hydrolyze dUTP and thus incorporate uracil into their DNA, suffering from chromosomal fragmentation. The postulated mechanism for the double-strand DNA breaks is clustered uracil excision, which requires high density of DNA-uracils. However, we did not find enough uracil residues or excision nicks in the DNA of dut mutants to account for clustered uracil excision. Using a dut recBC(Ts) mutant of E.coli to inquire into the mechanism of uracil-triggered chromosomal fragmentation, we show that this fragmentation requires DNA replication and, in turn, inhibits replication of the chromosomal terminus. As a result, origin-containing sub-chromosomal fragments accumulate in dut recBC conditions, indicating preferential demise of replication bubbles. We propose that the basic mechanism of the uracil-triggered chromosomal fragmentation is replication fork collapse at uracil-excision nicks. Possible explanations for the low level terminus fragmentation are also considered.  相似文献   

13.
The major abasic endonuclease of human cells, Ape1 protein, is a multifunctional enzyme with critical roles in base excision repair (BER) of DNA. In addition to its primary activity as an apurinic/apyrimidinic endonuclease in BER, Ape1 also possesses 3'-phosphodiesterase, 3'-phosphatase, and 3'-->5'-exonuclease functions specific for the 3' termini of internal nicks and gaps in DNA. The exonuclease activity is enhanced at 3' mismatches, which suggests a possible role in BER for Ape1 as a proofreading activity for the relatively inaccurate DNA polymerase beta. To elucidate this role more precisely, we investigated the ability of Ape1 to degrade DNA substrates that mimic BER intermediates. We found that the Ape1 exonuclease is active at both mismatched and correctly matched 3' termini, with preference for mismatches. In our hands, the exonuclease activity of Ape1 was more active at one-nucleotide gaps than at nicks in DNA, even though the latter should represent the product of repair synthesis by polymerase beta. However, the exonuclease activity was inhibited by the presence of nearby 5'-incised abasic residues, which result from the apurinic/apyrimidinic endonuclease activity of Ape1. The same was true for the recently described exonuclease activity of Escherichia coli endonuclease IV. Exonuclease III, the E. coli homolog of Ape1, did not discriminate among the different substrates. Removal of the 5' abasic residue by polymerase beta alleviated the inhibition of the Ape1 exonuclease activity. These results suggest roles for the Ape1 exonuclease during BER after both DNA repair synthesis and excision of the abasic deoxyribose-5-phosphate by polymerase beta.  相似文献   

14.
The inactivation efficiency and repair of single-strand breaks was investigated using model strand breaks created by endonucleolytic incision of damaged DNA. Phi X-174 duplex transfecting DNA containing either thymine glycols, urea residues, or abasic (AP) sites was incubated with AP endonucleases that produce breaks on the 3' side, the 5' side, or both sides of the lesion. For each lesion, incubation with Escherichia coli endonuclease III results in a single-strand break containing a 3' alpha, beta-unsaturated aldehyde (4-hydroxy-2-pentenal), while treatment of AP- or urea-containing DNA with E. coli endonuclease IV results in a single-strand break containing a 5' deoxyribose or a 5' deoxyribosylurea moiety, respectively. Incubation of lesion-containing DNA with both enzymes results in a base gap. Ligatable nicks containing 3' hydroxyl and 5' phosphate moieties were produced by subjecting undamaged DNA to DNase I. When the biological activity of these DNAs was assessed in wild-type cells, ligatable nicks were not lethal, but each of the other strand breaks tested was lethal, having inactivation efficiencies between 0.12 and 0.14. These inactivation efficiencies are similar to those of the base lesions from which the strand breaks were derived. In keeping with the current model of base excision repair, when phi X duplex DNA containing strand breaks with a blocked 3' terminus was transfected into an E. coli double mutant lacking the major 5' cellular AP endonucleases, a greater than twofold decrease in survival was observed. Moreover, when this DNA was treated with a 5' AP endonuclease prior to transfection, the survival returned to that of wild type. As expected, when DNA containing strand breaks with a 5' blocked terminus or DNA containing base gaps was transfected into the double mutant lacking 5' AP endonucleases, the survival was the same as in wild-type cells. The decreased survival of transfecting DNA containing thymine glycols, urea, or AP sites observed in appropriate base excision repair-defective mutants was also obviated if the DNA was incubated with the homologous enzyme prior to transfection. Thus, in every case, with both base lesions and single-strand breaks, the lesion was repaired in the cell by the enzyme that recognizes it in vitro. Furthermore, the repair step in the cell could be eliminated if the appropriate enzyme was added in vitro prior to transfection.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We examined the relationship between the formation of proliferating cell nuclear antigen (PCNA) complex with DNA and nucleotide excision repair in human fibroblasts following ultraviolet light (uv) irradiation. PCNA complex formation was detected by the immunofluorescence method after methanol fixation and nucleotide excision repair activity was detected as the unscheduled DNA synthesis (UDS) by autoradiography labeled with [3H]thymidine. Quiescent normal cells showed a strong punctuated pattern of PCNA staining 5 min to 3 h and UDS 3 h after 10 J/m2 of uv irradiation, but they no longer showed PCNA staining and UDS 24 h after irradiation. In contrast, xeroderma pigmentosum group A (XP-A) cells, which lack UDS activity, did not show PCNA staining up to 30 min after irradiation; however, unexpectedly, they were stained 3 h and even 24 h after irradiation with their staining pattern being different from that in normal cells. Namely, the fluorescence spots in XP-A cells were larger in size and much smaller in number than those in normal cells. When XP-A cells were fused with normal cells with polyethylene glycol treatment, nuclei of XP-A cells showed a PCNA staining pattern similar to that of normal cells at 30 min, which was no longer detected 24 h after irradiation. These results suggest that there exist two types of PCNA complex formation, nucleotide excision repair-related and -unrelated, in human fibroblasts following uv irradiation.  相似文献   

16.
Lack of effect of hydroxyurea on base excision repair in mammalian cells   总被引:1,自引:0,他引:1  
The effect of hydroxyurea on the initial steps of base excision repair has been examined in mammalian cells in 3 different proliferative states: i.e., quiescent cells, asynchronously growing cells undergoing multiple divisions prior to confluence; and synchronous cell populations undergoing the first cell cycle(s) after release from quiescence. Two parameters of the base excision repair pathway were examined: (1) The direct excision of 7-methylguanine from cellular DNA in the presence of increasing hydroxyurea concentrations was quantitated by high performance liquid chromatography; (2) the effects of hydroxyurea on the uracil DNA glycosylase were examined by quantitating the levels of this base excision repair enzyme in quiescent and proliferating cells. In quiescent cells, hydroxyurea at concentrations routinely used to quantitate DNA repair had no effect on the excision rates of 7-methylguanine examined over a span of 3 days; nor was there any effect on the specific activity of uracil DNA glycosylase in confluent cells. In asynchronously proliferating mammalian cells, identical hydroxyurea concentrations had no effect on the induction of the glycosylase. In synchronous growing cells HU had no effect on the temporal sequence of induction of uracil DNA glycosylase prior to DNA replication, nor on the extent of this induction. These results suggest that hydroxyurea at concentrations generally used to measure DNA repair has no effect on base excision repair.  相似文献   

17.
In this report we show that human DNA Topoisomerase I (Top1) forms DNA-protein adducts with nicked and gapped DNA structures lacking a conventional Top1 cleavage site. The radioactively labeled crosslinking products were identified by SDS-gel electrophoresis. The chemical structure of the groups at 5' or 3' end of the nick does not have an effect on the formation of these covalent adducts. Therefore, all kinds of nicks, either directly induced by ionizing radiation or reactive oxygen species or indirectly induced in the course of base excision repair (BER) are targets for Top1 that competes with BER proteins and other nick-sensors. Top1-DNA covalent adducts formed in cells exposed to DNA damaging agents can promote genetic instability.  相似文献   

18.
Mismatch repair (MMR) systems enhance genomic stability by correcting DNA replication errors. The events in mammalian MMR pathways remain poorly understood. Using HeLa cell nuclear extracts, we analyzed correction of mispairs in circular DNA substrates with single defined nicks and measured excision in the absence of exogenous dNTPs by annealing specific oligonucleotide probes. In reactions initiated by concomitant temperature shift and addition of ATP or Mg(2+) to otherwise complete mixtures on ice, ATP-initiated excision and final error correction lagged behind Mg(2+)-initiated reactions, suggesting a very early requirement for ATP but not its hydrolysis. Subsequent stable commitment (resistance to added excess competitor substrate) began within 30 s, required hydrolyzable ATP, and plateaued after 60-70 s. This may reflect formation of hydrolysis-dependent translocating and/or pre-excision complexes. Excision along shorter nick-mispair paths began 15 s later than commitment. Both 3' to 5' and 5' to 3' excision gaps appeared at rates of approximately 0.0055 of final yields per second, respectively, 30 or 2.5 times the nonspecific excision rates. The lag between 3' to 5' excision gaps at two different positions yielded an excision progress rate of 5.2 nucleotides/s. In both substrates, corrected products appeared at fractional rates of 0.0027 of final yield per second. Aphidicolin, known to inhibit both the DNA synthesis and 3' to 5' exonuclease activities of polymerases delta and epsilon, reduced appearance of 3' to 5' excision tracts roughly 4-fold at 90 microm but had no effect on 5' to 3' excision.  相似文献   

19.
Neural retinas of 6-day-old chick embryos synthesize DNA and are able to carry out DNA excision repair. However, in contrast to the situation in human cells, the maximum rate of repair induced by N-acetoxy acetylaminofluorene (AAAF) is no greater than that induced by methyl methanesulfonate (MMS). With advancing differentiation of the retina in the embryo, cell multiplication and DNA synthesis decline and cease, and concurrently the cells lose the ability to carry out DNA excision repair. Thus, in 15-16-day embryos, in which the level of DNA synthesis is very low, DNA repair is barely detectable. If retinas from 14-day embryos are dissociated with trypsin and the cell suspension is plated in growth- promoting medium, DNA synthesis is reinitiated; however, in these cultures there is no detectable repair of MMS-induced damage, and only low levels of repair are observed after treatment with AAAF. A cell line was produced, by repeated passaging of these cultures, in which the cell population reached a steady state of DNA replication. However, the cell population remained deficient in the ability to repair MMS-induced damage. This cell line most likely predominantly comprises cells of retino-glial origin. Possible correlations between deficiency in DNA repair mechanisms in replicating cells and carcinogenesis in neural tissues are discussed.  相似文献   

20.
Specific premessenger ribonucleoprotein (RNP) particles, the Balbiani ring (BR) granules from Chironomus tentans salivary glands, were treated with RNase A to study the effect of RNA strand breaks on the higher order structure of the particles. Isolated, radioactively labeled BR granules, known to sediment at 300 S, were digested with RNase A and centrifuged in sucrose gradients. The fractionated particles were subsequently analyzed using electron microscopy and caesium chloride centrifugation. At a low RNase concentration, most of the 300 S particles disintegrated completely, and no metastable degradation products were observed. At intermediate RNase concentrations, no 300 S particles were left, but a minor fraction of the BR granules had unfolded and sedimented at 160 S. These granules could represent particles modified during the RNase treatment or represent a more slowly degrading subfraction of the particles. At a high RNase concentration, no RNP particles at all remained in the gradient. The rapid disintegration of the majority of the BR granules was investigated further by electrophoretic analysis of RNA in the remaining particles. During the RNase treatment BR granules, still sedimenting at 300 S, accumulated strand breaks; in fact, as many as 50 to 100 nicks in the 37 kb RNA could be tolerated. It was concluded from RNA analyses that the disintegration of the BR granules was not dependent on any single nick in the RNA, nor on the accumulation of a certain number of nicks, but rather on one or a few critical strand breaks. We propose that there are organizing sequences essential for particle integrity; once these sequences are nicked, the premessenger RNP particles are rapidly and completely degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号