首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans, which catalyzes the formation of S-hydroxymethylglutathione from formaldehyde and glutathione, and its complex with glutathione (Gfa-GTT) have been determined. Gfa has a new fold with two zinc-sulfur centers, one that is structural (zinc tetracoordinated) and one catalytic (zinc apparently tricoordinated). In Gfa-GTT, the catalytic zinc is displaced due to disulfide bond formation of glutathione with one of the zinc-coordinating cysteines. Soaking crystals of Gfa-GTT with formaldehyde restores the holoenzyme. Accordingly, the displaced zinc forms a complex by scavenging formaldehyde and glutathione. The activation of formaldehyde and of glutathione in this zinc complex favors the final nucleophilic addition, followed by relocation of zinc in the catalytic site. Therefore, the structures of Gfa and Gfa-GTT draw the critical association between a dynamic zinc redox switch and a nucleophilic addition as a new facet of the redox activity of zinc-sulfur sites.  相似文献   

2.
Substrate specificity of bovine liver formaldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Formaldehyde dehydrogenases isolated from several different biological sources have been reported to catalyze the NAD+-dependent oxidative acylation of glutathione by methylglyoxal to form S-pyruvylglutathione, suggesting the involvement of this enzyme in the metabolism of methylglyoxal. However, formaldehyde dehydrogenase from bovine liver is found not to use methylglyoxal or related alpha-ketoaldehydes as substrates. Using methylglyoxal with the enzyme under conditions favoring the forward reaction did not result in the formation of S-pyruvylglutathione. Using independently synthesized S-pyruvylglutathione with the enzyme under conditions favoring the reverse reaction did not result in the production of methylglyoxal. In addition, methylglyoxal and several related alpha-ketoaldehydes did not exhibit detectable activity with formaldehyde dehydrogenase partially purified from human liver, contrary to a previous report. Some, if not all, past reports that methylglyoxal serves as a substrate for the dehydrogenase may be due to the demonstrated presence of contaminating formaldehyde in some commercially available preparations of methylglyoxal. In a related study, S-hydroxymethylglutathione, formed by pre-equilibrium addition of formaldehyde to glutathione, is concluded to be direct substrate for the dehydrogenase. This follows from the observation that the catalytic turnover number of the enzyme in the forward direction exceeds by a factor of approximately 20 the first order rate constant for decomposition of S-hydroxymethylglutathione to glutathione and formaldehyde (k = 5.03 +/- 0.30 min-1, pH 8, 25 degrees C).  相似文献   

3.
GSNO (S-nitrosoglutathione) is emerging as a key regulator in NO signalling as it is in equilibrium with S-nitrosated proteins. Accordingly, it is of great interest to investigate GSNO metabolism in terms of competitive pathways and redox state. The present study explored ADH3 (alcohol dehydrogenase 3) in its dual function as GSNOR (GSNO reductase) and glutathione-dependent formaldehyde dehydrogenase. The glutathione adduct of formaldehyde, HMGSH (S-hydroxymethylglutathione), was oxidized with a k(cat)/K(m) value approx. 10 times the k(cat)/K(m) value of GSNO reduction, as determined by fluorescence spectroscopy. HMGSH oxidation in vitro was greatly accelerated in the presence of GSNO, which was concurrently reduced under cofactor recycling. Hence, considering the high cytosolic NAD(+)/NADH ratio, formaldehyde probably triggers ADH3-mediated GSNO reduction by enzyme-bound cofactor recycling and might result in a decrease in cellular S-NO (S-nitrosothiol) content in vivo. Formaldehyde exposure affected S-NO content in cultured cells with a trend towards decreased levels at concentrations of 1-5 mM, in agreement with the proposed mechanism. Product formation after GSNO reduction to the intermediate semimercaptal responded to GSH/GSNO ratios; ratios up to 2-fold allowed the spontaneous rearrangement to glutathione sulfinamide, whereas 5-fold excess of GSH favoured the interception of the intermediate to form glutathione disulfide. The sulfinamide and its hydrolysis product, glutathione sulfinic acid, inhibited GST (glutathione transferase) activity. Taken together, the findings of the present study provide indirect evidence for formaldehyde as a physiological trigger of GSNO depletion and show that GSNO reduction can result in the formation of GST inhibitors, which, however, is prevented under normal cellular redox conditions.  相似文献   

4.
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD+- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenases from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.  相似文献   

5.
Formaldehyde is a toxin and carcinogen that is both an environmental pollutant and an endogenous metabolite. Formaldehyde metabolism, which is probably essential for all aerobic cells, likely proceeds via multiple mechanisms, including via a glutathione-dependent pathway that is widely conserved in bacteria, plants and animals. However, it is unclear whether the first step in the glutathione-dependent pathway (i.e. formation of S-hydroxymethylglutathione (HMG)) is enzyme-catalysed. We report studies on glutathione-dependent formaldehyde-activating enzyme (GFA) from Paracoccus denitrificans, which has been proposed to catalyse HMG formation from glutathione and formaldehyde on the basis of studies using NMR exchange spectroscopy (EXSY). Although we were able to replicate the EXSY results, time course experiments unexpectedly imply that GFA does not catalyse HMG formation under standard conditions. However, GFA was observed to bind glutathione using NMR and mass spectrometry. Overall, the results reveal that GFA binds glutathione but does not directly catalyse HMG formation under standard conditions. Thus, it is possible that GFA acts as a glutathione carrier that acts to co-localise glutathione and formaldehyde in a cellular context.  相似文献   

6.
The glutathione-dependent formaldehyde dehydrogenase from Escherichia coli has been purified to homogeneity and characterized. It is a 83,000-kDa homodimer containing 4 g-atom of zinc per dimer with a specific activity of 60 units/mg toward S-(hydroxymethyl)glutathione and NAD+ as substrates. Its isoelectric point, 4.4, is consistent with both its amino acid composition and chromatographic behavior on DEAE HPLC. The N-terminus is unblocked, and 47 residues from the N-terminus were sequenced. A computer search of the Swiss-Prot protein sequence data bank shows that the N-terminal sequence, [sequence; see text], is homologous with the mammalian class III alcohol dehydrogenases with 27 identities when compared to the human enzyme. Like the human, rat, and rabbit enzymes, it has high formaldehyde dehydrogenase activity in the presence of glutathione and catalyzes the oxidation of normal alcohols (ethanol, octanol, 12-hydroxydodecanoate) in a reaction that is not GSH-dependent. In addition, hemithiolacetals other than those formed from GSH, including omega-thiol fatty acids, also are substrates. The wide distribution and high degree of similarity of this enzyme to the plant and animal alcohol dehydrogenases suggest that the E. coli enzyme is closely related to the ancestor of the plant and animal dimeric zinc alcohol dehydrogenases.  相似文献   

7.
Formaldehyde, a major industrial chemical, is classified as a carcinogen because of its high reactivity with DNA. It is inactivated by oxidative metabolism to formate in humans by glutathione-dependent formaldehyde dehydrogenase. This NAD(+)-dependent enzyme belongs to the family of zinc-dependent alcohol dehydrogenases with 40 kDa subunits and is also called ADH3 or chi-ADH. The first step in the reaction involves the nonenzymatic formation of the S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione. When formaldehyde concentrations exceed that of glutathione, nonoxidizable adducts can be formed in vitro. The S-(hydroxymethyl)glutathione adduct will be predominant in vivo, since circulating glutathione concentrations are reported to be 50 times that of formaldehyde in humans. Initial velocity, product inhibition, dead-end inhibition, and equilibrium binding studies indicate that the catalytic mechanism for oxidation of S-(hydroxymethyl)glutathione and 12-hydroxydodecanoic acid (12-HDDA) with NAD(+) is random bi-bi. Formation of an E.NADH.12-HDDA abortive complex was evident from equilibrium binding studies, but no substrate inhibition was seen with 12-HDDA. 12-Oxododecanoic acid (12-ODDA) exhibited substrate inhibition, which is consistent with a preferred pathway for substrate addition in the reductive reaction and formation of an abortive E.NAD(+).12-ODDA complex. The random mechanism is consistent with the published three-dimensional structure of the formaldehyde dehydrogenase.NAD(+) complex, which exhibits a unique semi-open coenzyme-catalytic domain conformation where substrates can bind or dissociate in any order.  相似文献   

8.
Rat liver glutathione S-transferase, isozyme 1-1, catalyzes the glutathione-dependent isomerization of Delta(5)-androstene-3,17-dione and also binds steroid sulfates at a nonsubstrate inhibitory steroid site. 17beta-Iodoacetoxy-estradiol-3-sulfate, a reactive steroid analogue, produces a time-dependent inactivation of this glutathione S-transferase to a limit of 60% residual activity. The rate constant for inactivation (k(obs)) exhibits a nonlinear dependence on reagent concentration with K(I) = 71 microm and k(max) = 0.0133 min(-1). Complete protection against inactivation is provided by 17beta-estradiol-3,17-disulfate, whereas Delta5-androstene-3,17-dione and S-methylglutathione have little effect on k(obs). These results indicate that 17beta-iodoacetoxy-estradiol-3-sulfate reacts as an affinity label of the nonsubstrate steroid site rather than of the substrate sites occupied by Delta5-androstene-3,17-dione or glutathione. Loss of activity occurs concomitant with incorporation of about 1 mol 14C-labeled reagent/mol enzyme dimer when the enzyme is maximally inactivated. Isolation of the labeled peptide from the chymotryptic digest shows that Cys(17) is the only enzymic amino acid modified. Covalent modification of Cys(17) by 17beta-iodoacetoxy-estradiol-3-sulfate on subunit A prevents reaction of the steroid analogue with subunit B. These results and examination of the crystal structure of the enzyme suggest that the interaction between the two subunits of glutathione S-transferase 1-1, and the electrostatic attraction between the 3-sulfate of the reagent and Arg(14) of subunit B, are important in binding steroid sulfates at the nonsubstrate steroid binding site and in determining the specificity of this affinity label.  相似文献   

9.
Glucosamine 6-phosphate (GlcN-6-P) synthase is an ubiquitous enzyme that catalyses the first committed step in the reaction pathway that leads to formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), a precursor of macromolecules that contain amino sugars. Despite sequence similarities, the enzyme in eukaryotes is tetrameric, whereas in prokaryotes it is a dimer. The activity of eukaryotic GlcN-6-P synthase (known as Gfa1p) is regulated by feedback inhibition by UDP-GlcNAc, the end product of the reaction pathway, whereas in prokaryotes the GlcN-6-P synthase (known as GlmS) is not regulated at the post-translational level. In bacteria and fungi the enzyme is essential for cell wall synthesis. In human the enzyme is a mediator of insulin resistance. For these reasons, Gfa1p is a target in anti-fungal chemotherapy and in therapeutics for type-2 diabetes. The crystal structure of the Gfa1p isomerase domain from Candida albicans has been analysed in complex with the allosteric inhibitor UDP-GlcNAc and in the presence of glucose 6-phosphate, fructose 6-phosphate and an analogue of the reaction intermediate, 2-amino-2-deoxy-d-mannitol 6-phosphate (ADMP). A solution structure of the native Gfa1p has been deduced using small-angle X-ray scattering (SAXS). The tetrameric Gfa1p can be described as a dimer of dimers, with each half similar to the related enzyme from Escherichia coli. The core of the protein consists of the isomerase domains. UDP-GlcNAc binds, together with a metal cation, in a well-defined pocket on the surface of the isomerase domain. The residues responsible for tetramerisation and for binding UDP-GlcNAc are conserved only among eukaryotic sequences. Comparison with the previously studied GlmS from E. coli reveals differences as well as similarities in the isomerase active site. This study of Gfa1p focuses on the features that distinguish it from the prokaryotic homologue in terms of quaternary structure, control of the enzymatic activity and details of the isomerase active site.  相似文献   

10.
Formaldehyde dehydrogenase (EC 1.2.1.1) is a widely occurring enzyme which catalyzes the oxidation of S-hydroxymethylglutathione, formed from formaldehyde and glutathione, into S-formyglutathione in the presence of NAD. We determined the amino acid sequences for 5 tryptic peptides (containing altogether 57 amino acids) from electrophoretically homogeneous rat liver formaldehyde dehydrogenase and found that they all were exactly homologous to the sequence of rat liver class III alcohol dehydrogenase (ADH-2). Formaldehyde dehydrogenase was found to be able at high pH values to catalyze the NAD-dependent oxidation of long-chain aliphatic alcohols like n-octanol and 12-hydroxydodecanoate but ethanol was used only at very high substrate concentrations and pyrazole was not inhibitory. The amino acid sequence homology and identical structural and kinetic properties indicate that formaldehyde dehydrogenase and the mammalian class III alcohol dehydrogenases are identical enzymes.  相似文献   

11.
Numerous physiological aldehydes besides glucose are substrates of aldose reductase, the first enzyme of the polyol pathway which has been implicated in the etiology of diabetic complications. The 2-oxoaldehyde methylglyoxal is a preferred substrate of aldose reductase but is also the main physiological substrate of the glutathione-dependent glyoxalase system. Aldose reductase catalyzes the reduction of methylglyoxal efficiently (k(cat)=142 min(-1) and k(cat)/K(m)=1.8x10(7) M(-1) min(-1)). In the presence of physiological concentrations of glutathione, methylglyoxal is significantly converted into the hemithioacetal, which is the actual substrate of glyoxalase-I. However, in the presence of glutathione, the efficiency of reduction of methylglyoxal, catalyzed by aldose reductase, also increases. In addition, the site of reduction switches from the aldehyde to the ketone carbonyl. Thus, glutathione converts aldose reductase from an aldehyde reductase to a ketone reductase with methylglyoxal as substrate. The relative importance of aldose reductase and glyoxalase-I in the metabolic disposal of methylglyoxal is highly dependent upon the concentration of glutathione, owing to the non-catalytic pre-enzymatic reaction between methylglyoxal and glutathione.  相似文献   

12.
Glutathione-dependent formaldehyde dehydrogenase (FALDH) is the main enzymatic system for formaldehyde detoxification in all eukaryotic and many prokaryotic organisms. The enzyme of yeasts and some bacteria exhibits about 10-fold higher k(cat) and K(m) values than those of the enzyme from animals and plants. Typically Thr-269 and Glu-267 are found in the coenzyme-binding site of yeast FALDH, but Ile-269 and Asp-267 are present in the FALDH of animals. By site-directed mutagenesis we have prepared the T269I and the D267E mutants and the D267E/T269I double mutant of Saccharomyces cerevisiae FALDH with the aim of investigating the role of these residues in the kinetics. The T269I and the D267E mutants have identical kinetic properties as compared with the wild-type enzyme, although T269I is highly unstable. In contrast, the D267E/T269I double mutant is stable and shows low K(m) (2.5 microM) and low k(cat) (285 min(-1)) values with S-hydroxymethylglutathione, similar to those of the human enzyme. Therefore, the simultaneous exchange at both residues is the structural basis of the two distinct FALDH kinetic types. The local structural perturbations imposed by the substitutions are suggested by molecular modeling studies. Finally, we have studied the effect of FALDH deletion and overexpression on the growth of S. cerevisiae. It is concluded that the FALDH gene is not essential but enhances the resistance against formaldehyde (0.3-1 mM). Moreover, the wild-type enzyme (with high k(cat) and K(m)) provides more resistance than the double mutant (with low k(cat) and K(m)).  相似文献   

13.
Lee SL  Wang MF  Lee AI  Yin SJ 《FEBS letters》2003,544(1-3):143-147
Human class III alcohol dehydrogenase (ADH3), also known as glutathione-dependent formaldehyde dehydrogenase, exhibited non-hyperbolic kinetics with ethanol at a near physiological pH 7.5. The S(0.5) and k(cat) were determined to be 3.4+/-0.3 M and 33+/-3 min(-1), and the Hill coefficient (h) 2.21+/-0.09, indicating positive cooperativity. Strikingly, the S(0.5) for ethanol was found to be 5.4 x 10(6)-fold higher than the K(m) for S-(hydroxymethyl)glutathione, a classic substrate for the enzyme, whereas the k(cat) for the former was 41% lower than that for the latter. Isotope effects on enzyme activity suggest that hydride transfer may be rate-limiting in the oxidation of ethanol. Kinetic simulations using the experimentally determined Hill constant suggest that gastric ADH3 may highly effectively contribute to the first-pass metabolism at 0.5-3 M ethanol, an attainable range in the gastric lumen during alcohol consumption. The positive cooperativity mainly accounts for this metabolic role of ADH3.  相似文献   

14.
NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) of Paracoccus denitrificans has been purified as a tetramer with a relative molecular mass of 150 kDa. The gene encoding GD-FALDH (flhA) has been isolated, sequenced, and mutated by insertion of a kanamycin resistance gene. The mutant strain is not able to grow on methanol, methylamine, or choline, while heterotrophic growth is not influenced by the mutation. This finding indicates that GD-FALDH of P. denitrificans is essential for the oxidation of formaldehyde produced during methylotrophic growth.  相似文献   

15.
Downstream of flhA, the Paracoccus denitrificans gene encoding glutathione-dependent formaldehyde dehydrogenase, an open reading frame was identified and called fghA. The gene product of fghA showed appreciable similarity with human esterase D and with the deduced amino acid sequences of open reading frames found in Escherichia coli, Haemophilus influenzae, and Saccharomyces cerevisiae. Mutating fghA strongly reduced S-formylglutathione hydrolase activity. The mutant was unable to grow on methanol and methylamine, indicating that the enzyme is essential for methylotrophic growth. S-Formylglutathione hydrolase appears to be part of a formaldehyde detoxification pathway that is universal in nature.  相似文献   

16.
NAD-linked, factor-dependent formaldehyde dehydrogenase (FD-FA1DH) of the Gram-positive methylotrophic bacterium, Amycolatopsis methanolica, was purified to homogeneity. It is a trimeric enzyme with identical subunits (molecular mass 40 kDa) containing 6 atoms Zn/enzyme molecule. The factor is a heat-stable, low-molecular-mass compound, which showed retention on an Aminex HPX-87H column. Inactivation of the factor occurred during manipulation, but activity could be restored by incubation with dithiothreitol. The identity of the factor is still unknown. It could not be replaced by thiol compounds or cofactors known to be involved in metabolism of C1 compounds. Of the aldehydes tested, only formaldehyde was a substrate. However, the enzyme showed also activity with higher aliphatic alcohols and the presence of the factor was not required for this reaction. Methanol was not a substrate, but high concentrations of it could replace the factor in the conversion of formaldehyde. Presumably, a hemiacetal of formaldehyde is the genuine substrate, which, in the case of methanol, acts as a factor leading to methylformate as the product. This view is supported by the fact that formate could only be detected in the reaction mixture after acidification. Inhibition studies revealed that the enzyme contains a reactive thiol group, being protected by the binding of NAD against attack by heavy-metal ions and aldehydes. Studies on the effect of the order of addition of coenzyme and substrate suggested that optimal catalysis required NAD as the first binding component. Substrate specificity and the induction pattern clearly indicate a role of the enzyme in formaldehyde oxidation. However, since FD-FA1DH was also found in A. methanolica grown on n-butanol, but not on ethanol, it may have a role in the oxidation of higher aliphatic alcohols as well. FD-FA1DH and the factor from A. methanolica are very similar to a combination already described for Rhodococcus erythropolis [Eggeling, L. & Sahm, H. (1985) Eur. J. Biochem. 150, 129-134]. NAD-linked, glutathione-dependent formaldehyde dehydrogenase (GD-FA1DH) resembles FD-FA1DH in many respects. Since glutathione has so far not been detected in Gram-positive bacteria, FD-FA1DH could be the counterpart of this enzyme in Gram-positive bacteria. Alignment of the N-terminal sequence (31 residues) of FD-FA1DH with that of GD-FA1DH from rat liver indeed showed similarity (30% identical positions). However, comparable similarity was found with class I alcohol dehydrogenase from this organism and with cytosolic alcohol dehydrogenase from Saccharomyces cerevisiae, isozyme 1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Porter DJ  Short SA 《Biochemistry》2000,39(38):11788-11800
The catalytically active form of monofunctional yeast orotidine-5'-phosphate decarboxylase was a dimer (E(2)). The dimer equilibrium dissociation constant was 0.25 microM in 0.01 M MOPS Na(+) at pH 7.2. The bimolecular rate constant for dimer formation was 1.56 microM(-1) s(-1). The dimeric form of the enzyme was stabilized by NaCl such that the enzyme was E(2) in 100 mM NaCl at all concentrations of enzyme tested. The kinetics of binding of OMP to E(2) was governed by two ionizations (pK(1) = 6.1 and pK(2) = 7.7). From studies with substrate analogues, the higher pK was assigned to a group on the enzyme that interacted with the pyrimidinyl moiety. The value of the lower pK was dependent on the substrate analogue, which suggested that it was not exclusively the result of ionization of the phosphoryl moiety. During the decarboxylation of OMP, the fluorescence of E(2) was quenched over 20%. The enzymatic species with reduced fluorescence was a catalytically competent intermediate that had kinetic properties consistent with it being the initial enzyme-substrate complex. The stoichiometry for binding of OMP to E(2) was one OMP per enzyme monomer. The value of the first-order rate constant for conversion of the enzyme-substrate complex to free enzyme (36 s(-1)) calculated from a single turnover experiment ([E] > [S]) was slightly greater than the value of k(cat), 20 s(-1) (corrected for stoichiometry), calculated from steady-state data. In the single turnover experiments, the enzyme was E(2)*S, whereas in the steady-state turnover the experiment enzyme was E(2)*S(2). The similarity of these values suggested that the subunits were catalytically independent such that E(2)*S(2) could be treated as E*S and that conversion of the enzyme-substrate complex to E was k(cat). Kinetic data for the approach to the steady-state with OMP and E(2) yield a bimolecular association rate complex of 62 microM(-1) s(-1)and a dissociation rate constant for E*S of 60 s(-1). The commitment to catalysis was 0.25. By monitoring the effect of carbonic anhydrase on [H(+)] changes during a single turnover experiment, the initial product of the decarboxylation reaction was shown to be CO(2) not HCO(3-). UMP was released from the enzyme concomitantly with CO(2) during the conversion of E*S to E. Furthermore, the enzyme removed an enzyme equivalent of H(+) from solvent during this step of the reaction. The bimolecular rate constants for association of 6-AzaUMP and 8-AzaXMP, substrate analogues with markedly different nucleobases, had association rate constants of 112 and 130 microM(-1) s(-1), respectively. These results suggested that the nucleobase did not contribute significantly to the success of formation of the initial enzyme-substrate complex.  相似文献   

18.
Sanghani PC  Bosron WF  Hurley TD 《Biochemistry》2002,41(51):15189-15194
Human glutathione-dependent formaldehyde dehydrogenase plays an important role in the metabolism of glutathione adducts such as S-(hydroxymethyl)glutathione and S-nitrosoglutathione. The role of specific active site residues in binding these physiologically important substrates and the structural changes during the catalytic cycle of glutathione-dependent formaldehyde dehydrogenase was examined by determining the crystal structure of a ternary complex with S-(hydroxymethyl)glutathione and the reduced coenzyme to 2.6 A resolution. The formation of the ternary complex caused the movement of the catalytic domain toward the coenzyme-binding domain. This represents the first observation of domain closure in glutathione-dependent formaldehyde dehydrogenase in response to substrate binding. A water molecule adjacent to the 2'-ribose hydroxyl of NADH suggests that the alcohol proton is relayed to solvent directly from the coenzyme, rather than through the action of the terminal histidine residue as observed in the proton relay system for class I alcohol dehydrogenases. S-(Hydroxymethyl)glutathione is directly coordinated to the active site zinc and forms interactions with the highly conserved residues Arg114, Asp55, Glu57, and Thr46. The active site zinc has a tetrahedral coordination environment with Cys44, His66, and Cys173 as the three protein ligands in addition to S-(hydroxymethyl)glutathione. This is in contrast to zinc coordination in the binary coenzyme complex where all of the ligands were contributed by the enzyme and included Glu67 as the fourth protein ligand. This change in zinc coordination is accomplished by an approximately 2.3 A movement of the catalytic zinc.  相似文献   

19.
S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes in that primary short-chain alcohols are not its principle substrate. GSNOR metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the spontaneous adduct of formaldehyde and glutathione), and some alcohols. GSNOR modulates reactive nitric oxide (?NO) availability in the cell by catalyzing the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can significantly alter cellular homeostasis, leading to disease. GSNOR plays an important regulatory role in smooth muscle relaxation, immune function, inflammation, neuronal development and cancer progression, among many other processes. In recent years, the therapeutic inhibition of GSNOR has been investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The direct action of ?NO on cellular pathways, as well as the important regulatory role of protein S-nitrosation, is closely tied to GSNOR regulation and defines this enzyme as an important therapeutic target.  相似文献   

20.
A comparative study of reduced and oxidized glutathione forms and the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione-S-transferase, and glutathione reductase) has been performed in the rat mucous membranes of different gastroduodenal areas 24 hours after the injection of cysteamine--a specific ulcerogenic agent. It has been shown that cysteamine causes a decrease in the concentration of reduced and an increase in the concentration of oxidized glutathione forms in all gastroduodenal areas. The fall in reduced glutathione form concentration is the greatest in the duodenal mucosa. A considerable decrease in glutathione-dependent enzyme activity, especially glutathione-S-transferase, was observed in duodenal mucosa. It is concluded that glutathione and glutathione-dependent enzyme system may be directly related to pathogenetic mechanisms of gastroduodenal ulcer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号