共查询到20条相似文献,搜索用时 0 毫秒
1.
E J Brown J J Pignatello M M Martinson R L Crawford 《Applied and environmental microbiology》1986,52(1):92-97
The steady-state growth of a Flavobacterium strain known to utilize pentachlorophenol (PCP) was examined when cellobiose and PCP simultaneously limited its growth rate in continuous culture. A concentration of 600 mg of PCP per liter in influent medium could be continuously degraded without affecting steady-state growth. We measured specific rates of PCP carbon degradation as high as 0.15 +/- 0.01 g (dry weight) of C per h at a growth rate of 0.045 h-1. Comparable specific rates of PCP degradation were obtained and maintained by PCP-adapted, natural consortia of epilithic microorganisms. The consortium results suggest that a fixed-film bioreactor containing a PCP-adapted natural microbial population could be used to treat PCP-contaminated water. 相似文献
2.
Lili Zhang Jun Hu Runye Zhu Qingwei Zhou Jianmeng Chen 《Applied microbiology and biotechnology》2013,97(8):3687-3698
Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated. 相似文献
3.
Aerobic degradation of 2,4,6-trichlorophenol by a microbial consortium - selection and characterization of microbial consortium 总被引:1,自引:0,他引:1
A microbial consortium that efficiently degrades 2,4,6-TCP (2,4,6-trichlorophenol), as the sole source of carbon and energy under aerobic conditions was selected from municipal activated sludge. Six bacterial strains, designated S(1), S(2), S(3), S(4), S(5) and S(6), were isolated from the selected consortium and five were identified as Sphingomonas paucimobilis (S(2), S(3)), Burkholderia cepacia(S(4)), Chryseomonas luteola (S(5)) and Vibrio metschnikovii (S(6)). After prolonged cultivation followed by successive transfers, the consortium's degradation ability was improved and reached a specific degradation rate of 34 mg 2,4,6-TCP g(-1) dry weight h(-1) (about 51 mg 2,4,6-TCP g(-1) cell protein h(-1)). The soluble chemical oxygen demand, chloride and oxygen uptake balance data clearly indicate the complete dechlorination and mineralization of 2,4,6-TCP. The consortium's activity was not inhibited by 2,4,6-TCP concentrations 相似文献
4.
复合菌系降解纤维素过程中微生物群落结构的变化 总被引:3,自引:0,他引:3
为明确高效纤维素降解复合菌系降解过程中微生物群落结构的变化规律及关键的降解功能菌,利用该复合菌系对滤纸和稻秆进行生物处理,通过底物降解、微生物生长量、发酵液pH的变化情况,选择不同降解时期复合菌系提取的总DNA进行细菌16S rRNA基因扩增子高通量测序。通过分解特性试验确定在接种后培养第12、72、168 h分别作为降解初期、高峰期、末期。该复合菌系分别主要由1个门、2个纲、2个目、7个科、11个属组成。随着降解的进行,短芽胞杆菌属Brevibacillus、喜热菌属Caloramator的相对丰度逐渐降低;梭菌属Clostridium、芽胞杆菌属Bacillus、地芽胞杆菌属Geobacillus、柯恩氏菌属Cohnella的相对丰度逐渐升高;解脲芽胞杆菌属Ureibacillus、泰氏菌属Tissierella、刺尾鱼菌属Epulopiscium在降解高峰期时相对丰度最高;各时期类芽胞杆菌属Paenibacillus、瘤胃球菌属Ruminococcus的相对丰度无明显变化。上述11个主要菌属均属于厚壁菌门,具有嗜热、耐热、适应广泛pH、降解纤维素或半纤维素的特性。好氧型细菌是降解初期的主要优势功能菌,到中后期厌氧型细菌逐渐增多,并逐步取代好氧型细菌成为降解纤维素的主要细菌。 相似文献
5.
A mecoprop [(+/-)-2-(4-chloro-2-methylphenoxy)propionic acid; MCPP]-degrading bacterium identified as Stenotrophomonas maltophilia PM was isolated from a Danish aquifer. Besides mecoprop, the bacterium was also able to degrade MCPA [(4-chloro-2-methylphenoxy)acetic acid)], MCPB [(4-chloro-2-methylphenoxy)butyric acid], 4-CPA [(4-chlorophenoxy)acetic acid], 2, 4-D [(2, 4-dichlorophenoxy)acetic acid], 2, 4-DP [(+/-)-2-(2, 4-dichlorophenoxy)propionic acid] and 2, 4-DB [(2, 4-dichlorophenoxy)butyric acid]. The bacterium was able to grow using these individual phenoxyalkanoic acids as the sole source of carbon and energy. In addition, it was able to co-metabolically degrade the phenoxyalkanoic acid 2, 4, 5-T [(2, 4, 5-trichlorophenoxy)acetic acid)] in the presence of mecoprop. At high 2, 4, 5-T concentrations (100 and 52 mg/l), however, only partial degradation of both mecoprop and 2, 4, 5-T was obtained, thus indicating the production of toxic metabolites. Bacterial yields were highest when grown on the monochlorinated phenoxyalkanoic acids as compared to the dichlorinated analogues, an exception being growth on 4CPA, which resulted in the lowest yield at all. Using [ring-U-14C]-labeled herbicides it was shown that the lower yield on 2, 4-D than on mecoprop was accompanied by greater CO2 generation, thus indicating that less energy is available from the complete oxidation of the dichlorinated phenoxyalkanoic acids than the monochlorinated analogues. 相似文献
6.
A stabilized consortium of microbes which anaerobically degraded benzoate and produced CH4 was established by inoculation of a benzoate-mineral salts medium with sewage sludge; the consortium was routinely subcultured anaerobically in this medium for 3 years. Acetate, formate, H2 and CO2 were identified as intermediates in the overall conversion of benzoate to CH4 by the culture. Radioactivity was equally divided between the CH4 and CO2 from the degradation of uniformly ring-labeled [14C]benzoate. The methyl group of acetate was stoichiometrically converted to CH4. Acetate, cyclohexanecarboxylate, 2-hydroxycyclohexanecarboxylate, o-hydroxybenzoic acid and pimelic acid were converted to CH4 without a lag suggesting that benzoate was degraded by a reductive pathway. Addition of o-chlorobenzoate inhibited benzoate degradation but not acetate degradation or methane formation. Two methanogenic organisms were isolated from the mixed culture, neither organism was able to degrade benzoate, showing that the methanogenic bacteria served as terminal organisms of a metabolic food chain composed of several organisms. Removal of intermediates by the methanogenic bacteria provided thermodynamically favorable conditions for benzoate degradation. 相似文献
7.
Summary An aerobic mixed culture removing phenol was developed and maintained with a biomass of 2900mg/l–3400 mg/l in a fed-batch reactor by feeding phenol 500 mg/l/day. The mixed culture (AS) consisted of two non-phenol bacteria and eight phenol degraders, of which 4 gram-negative rods and 4 gram-positive rods, that could remove about 96% of the fed phenol in 12 hours at 30°C±3°C. This paper also reports the stability of the consortium with respect to its constitution and phenol degradation. 相似文献
8.
Towards efficient crude oil degradation by a mixed bacterial consortium 总被引:18,自引:0,他引:18
Rahman KS Thahira-Rahman J Lakshmanaperumalsamy P Banat IM 《Bioresource technology》2002,85(3):257-261
A laboratory study was undertaken to assess the optimal conditions for biodegradation of Bombay High (BH) crude oil. Among 130 oil degrading bacterial cultures isolated from oil contaminated soil samples, Micrococcus sp. GS2-22, Corynebacterium sp. GS5-66, Flavobacterium sp. DS5-73, Bacillus sp. DS6-86 and Pseudomonas sp. DS10-129 were selected for the study based on the efficiency of crude oil utilisation. A mixed bacterial consortium prepared using the above strains was also used. Individual bacterial cultures showed less growth and degradation than did the mixed bacterial consortium. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 78% of BH crude oil. This was followed by 66% by Pseudomonas sp. DS10-129, 59% by Bacillus sp. DS6-86, 49% by Micrococcus sp. GS2-22, 43% by Corynebacterium sp. GS5-66 and 41% by Flavobacterium sp. DS5-73. The percentage of degradation by the mixed bacterial consortium decreased from 78% to 52% as the concentration of crude oil was increased from 1% to 10%. Temperature of 30 degrees C and pH 7.5 were found to be optima for maximum biodegradation. 相似文献
9.
Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor 总被引:3,自引:0,他引:3
Biodegradation of phenol by a mixed microbial culture, isolated from a sewage treatment plant, was investigated in batch shake flasks. A minimum concentration of 100 and a maximum of 800 mg 1(-1) of phenol in the media were adapted in the degradation study. The phenol degradation rate varied largely and was less than 10 mg l(-1)h(-1) at both extremes of the initial concentrations in the media. The degradation rate was maximum 15.7 mg l(-1)h(-1) at 400 mg l(-1) phenol. The culture followed substrate inhibition kinetics and the specific growth rate were fitted to Haldane and Han-Levenspiel models. Between the two models the Han-Levenspiel was found to be a better fit with a root mean square error of 0.0211. The biokinetics constants estimated using these models showed good potential of the mixed microbial culture in phenol degradation. 相似文献
10.
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE. 相似文献
11.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 x 10(6) cells ml(-1) were 0.07, 1.17, and 3.56 microg ml(-1) h(-1) for initial concentrations of 5, 50, and 500 microg MTBE ml(-1), respectively. When incubated with 20 microg of uniformly labeled [(14)C]MTBE ml(-1), strain PM1 converted 46% to (14)CO(2) and 19% to (14)C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE(-1). Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 microg of MTBE ml(-1) added to the core material. The rate of MTBE removal increased with additional inputs of 20 microg of MTBE ml(-1). These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments. 相似文献
12.
P B Hatzinger K McClay S Vainberg M Tugusheva C W Condee R J Steffan 《Applied and environmental microbiology》2001,67(12):5601-5607
Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flava ENV735 was evaluated. ENV735 grew slowly on MTBE or tert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H(2) did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735. 相似文献
13.
Summary An integrated mixed bacterial culture consisting of four strains has been isolated by a batch enrichment technique. The cellulolytic member (strain D) is aCellulomonas sp. and the others are non-cellulolytic. The interaction between strains D and C is pronounced and appears to involve an exchange of reducing sugars and growth factors. The symbiotic relationship of this naturally occurring mixed culture is therefore one of mutualism. The filter paper cellulase and carboxymethyl cellulase activities in extracellular fluid are high, while -glucosidase activity is low. The mixed culture digests a variety of lignocellulosics efficiently and is of fundamental interest in the study of microbial interrelationships. 相似文献
14.
Free cyanide at 1 mm decreased the initial sulfate reduction rate of a batch culture of granular sludge from 0.3 to 0.14 mmol d(-1) g(-1) SS (suspended solid), whereas 0.5 mm cyanide had a minimal effect (0.25 mmol d(-1) g(-1) SS). The order of toxicity of metal-complexed cyanides to the sludge was as follows: zinc-complexed cyanide (most toxic) > free cyanide = nickel-complexed cyanide > copper-complexed cyanide (least toxic), which also corresponds well with the order of the stability (dissociation) constants of the metal-cyanide complexes. A consortium degrading cyanide was enriched using nickel cyanide as the sole nitrogen source. This consortium completely removed 0.5 mm of nickel-complexed cyanide under sulfate-reducing conditions in 11 d. Analysis of clone library of 16S rRNA genes shows that the consortium was composed of three major phylotypes including Desulfovibrio. 相似文献
15.
Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site 总被引:1,自引:0,他引:1
The simultaneous degradation of the pesticide methyl parathion and chlorpyrifos was tested using a bacterial consortium obtained by selective enrichment from highly contaminated soils in Moravia (Medellin, Colombia). Microorganisms identified in the consortium were Acinetobacter sp, Pseudomonas putida, Bacillus sp, Pseudomonas aeruginosa, Citrobacter freundii, Stenotrophomonas sp, Flavobacterium sp, Proteus vulgaris, Pseudomonas sp, Acinetobacter sp, Klebsiella sp and Proteus sp. In culture medium enriched with each of the pesticides, the consortium was able to degrade 150 mg l−1 of methyl parathion and chlorpyrifos in 120 h. When a mixture of 150 mg l−1 of both pesticides was used the percentage decreased to 72% for methyl parathion and 39% for chlorpyrifos. With the addition of glucose to the culture medium, the consortium simultaneously degraded 150 mg l−1 of the pesticides in the mixture. 4 treatments were carried out in soil that included the addition of glucose with microorganisms, the addition of sugar cane with microorganisms, microorganisms without nutrient addition and without the addition of any item. In the treatment in which glucose was used, degradation percentages of methyl parathion and chlorpyrifos of 98% and 97% respectively were obtained in 120 h. This treatment also achieved the highest percentage of reduction in toxicity, monitored with Vibrio fischeri. 相似文献
16.
4-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor 总被引:5,自引:0,他引:5
Caldeira M Heald SC Carvalho MF Vasconcelos I Bull AT Castro PM 《Applied microbiology and biotechnology》1999,52(5):722-729
A bacterial consortium that can degrade chloro- and nitrophenols has been isolated from the rhizosphere of Phragmitis communis. Degradation of 4-chlorophenol (4-CP) by a consortium attached to granular activated carbon (GAC) in a biofilm reactor was
evaluated during both open and closed modes of operation. During the operation of the biofilm reactor, 4-CP was not detected
in the column effluent, being either adsorbed to the GAC or biodegraded by the consortium. When 4-CP at 100 mg l−1 was fed to the column in open mode operation (20 mg g−1 GAC total supply), up to 27% was immediately available for biodegradation, the rest being adsorbed to the GAC. Biodegradation
continued after the system was returned to closed mode operation, indicating that GAC bound 4-CP became available to the consortium.
Biofilm batch cultures supplied with 10–216 mg 4-CP g−1 GAC suggested that a residual fraction of GAC-bound 4-CP was biologically unavailable. The consortium was able to metabolise
4-CP after perturbations by the addition of chromium (Cr VI) at 1–5 mg l−1 and nitrate at concentrations up to 400 mg l−1. The development of the biofilm structure was analysed by scanning electron microscopy and confocal laser scanning microscopy
(CLSM) techniques. CLSM revealed a heterogeneous structure with a network of channels throughout the biofilm, partially occupied
by microbial exopolymer structures.
Received: 17 March 1999 / Received revision: 27 May 1999 / Accepted: 28 May 1999 相似文献
17.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3
p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3
p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures.
Correspondence to: N. Khoury 相似文献
18.
Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil 总被引:7,自引:0,他引:7
A mixed enrichment culture of microorganisms capable of accelerated mineralization of atrazine was isolated from soil treated with successive applications of the herbicide. Liquid cultures of this consortium, in the presence of simple carbon sources, mineralized 96% of the applied atrazine (0.56 mM) within 7 days. Atrazine mineralization in culture is initiated with the formation of the metabolite hydroxyatrazine. In soil treated with atrazine at a concentration of 0.14 mM (concentration is based on total soil mass), and then inoculated with the microbial consortium, the parent compound was completely transformed in 25 days. After 30 days of incubation, 60% of the applied atrazine was accounted for as14CO2. As was found with the liquid cultures, hydroxyatrazine was the major metabolite. After 145 days, soil extractable hydroxyatrazine declined to zero and 86% of the applied atrazine was accounted for as14CO2. No metabolites, other than hydroxyatrazine, were recovered from either the liquid culture or soil inoculated with the consortium. The use of the mixed microbial culture enhanced mineralization more than 20 fold as compared to uninoculated soil. 相似文献
19.
Summary The anaerobic degradation of p-cresol under denitrifying conditions by a bacterial consortium was studied in batch and continuous cultures. Concentrations up to 3 mm were degraded within 5–6 days with 4-hydroxybenzyl alcohol, 4-hydroxybenzaldehyde and 4-hydroxybenzoate as intermediates. Steady states could be maintained at only one dilution rate, D=0.04 h–1. A further increase in the dilution rate to 0.0 8 h–1 resulted in culture wash-out. An estimation of the Saturation constant was made (<1 mg/l), taking the maximum specific growth rate as 0.045 h–1, thus yielding a value of 0.125 mg p-cresol/l.
Correspondence to: N. Khoury 相似文献
20.
【目的】为筛选吡啶高效降解复合菌系,促进高浓度吡啶废水的降解。本研究围绕吡啶降解复合菌系的筛选、降解特性及代谢途径,旨在获得吡啶高效降解复合菌系,为高浓度吡啶废水微生物降解及完全矿化提供理论依据和技术支撑。【方法】以吡啶为唯一碳氮源从某农药废水处理系统好氧活性污泥中筛选得到一个吡啶高效降解复合菌系MD1。采用16S rRNA高通量测序技术探究了MD1的群落结构及多样性,通过单因素实验考察了MD1的降解特性,利用气相色谱-质谱联用仪对MD1降解吡啶的代谢产物进行了初步检测与鉴定,推测吡啶可能的降解途径。【结果】结果显示,在温度30 ℃、pH 8.0、NaCl浓度0.1%的最佳条件下培养72 h,MD1对初始浓度1 400 mg/L的吡啶降解率为98.44%±0.27%。在属水平上,MD1主要由副球菌属(Paracoccus sp.)、布鲁氏菌属(unclassified_Brucellaceae)、无色杆菌属(Achromobacter sp.)等组成。由代谢产物检测结果初步推测MD1对吡啶的代谢途径为吡啶→烟酸→6-羟基烟酸→2,5-二羟基吡啶→N-甲酰基马来酰胺酸→马来酰胺酸→马来酸→CO2+H2O。【结论】研究筛选得到一个可高效降解吡啶、降解性能稳定的复合菌系MD1。解析了MD1的微生物组成多样性和群落结构,推测了MD1可能的代谢途径,研究结果丰富了吡啶降解微生物资源。 相似文献