首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ha M  Yoo KY  Cho SH 《Mutation research》2002,501(1-2):45-56
We studied to assess the validity of the glycophorin A (GPA) mutant assay as a biological marker of the cumulative effects of chronic low doses of ionizing radiation. In 144 nuclear power plants workers and 32 hospital workers, information on confounding factors, such as age and cigarette smoking, was obtained through a self-administered questionnaire. The information on physical exposure doses was obtained from the registries for radiation exposure monitoring and control at each facility. The range of cumulative exposure doses were 0-12.02cGy. GPA mutant assay was performed by the BR6 method with modification using a FACScan flow cytometer. Potential confounders, such as, age and cigarette smoking habits showed increasing trends with GPA variants, but were not of statistical significance. The hospital workers showed higher frequency of the GPA NO variant than nuclear power plant workers. Significant dose-response relationships were found between cumulative exposure to radiation and variants levels by simple and multiple linear regression models. The slope of regression equation of the dose-response of nuclear power plants workers was much smaller than that of hospital workers. These findings suggest that there may be dose-rate effects. In a population exposed to chronic low-dose radiation, the GPA assay shows potential to be used as an effective biologic marker for assessing the cumulative exposure dose although it could not be able to see a dose relation below 10cGy of cumulative exposure dose.  相似文献   

2.
The cortical thymocytes of rats in whole organism, isolated lobes of thymus and cells suspension were exposed to ionizing radiation in a wide range of doses (0.1-200 cGy). In contrast to relatively high dose radiation (50-200 cGy), exposure to doses of 10 cGy resulted in cell death without DNA degradation. The level of doses lower than 10 cGy (0.5-5 cGy) induced thymocyte death which is independent of DNA degradation, RNA and protein synthesis. With decrease in radiation dose, the increase of latent period preceding cell death took place.  相似文献   

3.
In studying the combined effect of single and fractionated exposure to gamma/neutron radiation (12.5-50 cGy) and sodium nitrite (100 mg/kg) and chronic irradiation with a mixture of radiation (25 cGy) and sodium nitrite, nitrate (10-100 mg/l) the synergistic effect was observed in inducing reciprocal translocations in mouse spermatocytes. The dose-response function of the reciprocal translocations occurrence in Af mouse spermatocytes was nonlinear; there was a "plateau" within the dose range from 25 to 50 cGy.  相似文献   

4.
The non-targeted effects of human exposure to ionising radiation, including transgenerational instability manifesting in the children of irradiated parents, remains poorly understood. Employing a mouse model, we have analysed whether low-dose acute or low-dose-rate chronic paternal γ-irradiation can destabilise the genomes of their first-generation offspring. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in DNA samples extracted from sperm of directly exposed BALB/c male mice, as well as from sperm and the brain of their first-generation offspring. For acute γ-irradiation from 10-100 cGy a linear dose-response for ESTR mutation induction was found in the germ line of directly exposed mice, with a doubling dose of 57 cGy. The mutagenicity of acute exposure to 100 cGy was more pronounced than that for chronic low-dose-rate irradiation. The analysis of transgenerational effects of paternal irradiation revealed that ESTR mutation frequencies were equally elevated in the germ line (sperm) and brain of the offspring of fathers exposed to 50 and 100 cGy of acute γ-rays. In contrast, neither paternal acute irradiation at lower doses (10-25 cGy), nor low-dose-rate exposure to 100 cGy affected stability of their offspring. Our data imply that the manifestation of transgenerational instability is triggered by a threshold dose of acute paternal irradiation. The results of our study also suggest that most doses of human exposure to ionising radiation, including radiotherapy regimens, may be unlikely to result in transgenerational instability in the offspring children of irradiated fathers.  相似文献   

5.
6.
The estimation of transgenerational genetic risk of radiation exposure to non-human species is crucial for the protection of ecosystems. Here we determined the frequency of specific-locus mutations at the five pigmentation loci in medaka spermatogonial stem cells after gamma irradiation at 0.03 cGy/min and 95 cGy/min. At each total dose, the mutation frequency was significantly lower in the 0.03-cGy/min group than in the 95-cGy/min group, suggesting a dose-rate effect. The ratio of the induced mutation frequency at 0.03 cGy/min to that at 95 cGy/min was approximately 0.42 from 0 to 1.9 Gy and approximately 0.33 from 1.9 to 4.75 cGy. In the mouse, this ratio is estimated to be 0.33 (Russell and Kelly, Proc. Natl. Acad. Sci. USA 79, 542-544, 1982). It is thus possible that the magnitude of the dose-rate effect on transgenerational mutation frequencies is comparable between mouse and medaka spermatogonia, suggesting similar dose-rate effects among vertebrates.  相似文献   

7.
The effects of prolonged irradiation at accumulated doses from 0.5 to 6.0 Gy (dose rate 3.03 cGy/day) on reproductive organs' weight (testes, epididymises, seminal vesicles, prostate) of male rats starting from the early ontogenetic period were studied. On the first day after the irradiation with 1.0 Gy dose a significant loss of the weight in testes and epididymises was revealed. This leaded to the marked atrophy of the organs with the increase of the radiation dose. Long-term restoration of the weight of testes and epididimyses was registered. It was not completed during three months after radiation exposure at 2.0 Gy and higher doses for epididimyses and 4.0-6.0 Gy for testes. The respective changes in the seminal vesicles and prostate weight were less pronounced and had more complicated character. However in the distant period (30-90 days of postreatment) after exposure to 2.0 Gy these parameters were noticeably decreased.  相似文献   

8.
Chromosomes occupy specific nonrandom domains in the interphase nucleus of eukaryotic cells. We have used a Chinese hamster-human somatic cell hybrid line containing a single human X chromosome to study the interphase distribution of the Xp telomere using fluorescent in situ hybridization and optical sectioning. A derivative cell line in which the X chromosome has been broken at Xq22-24 and healed by the addition of cloned human telomeric sequences was also studied to determine if introduction of these sequences at a previously interstitial site changed its location in interphase. The endogenous Xp telomere occupies a specific, nonrandom, internal domain. Introduction of a telomere at a previously interstitial site did not alter the interphase nuclear location of that site. The results suggest that nonrandom interphase location of telomeres may not be determined solely by the DNA sequence of the telomere.  相似文献   

9.
The effects of protracted exposure to 60Co gamma rays on survival and tumor induction in the beagle were investigated. Total accumulated doses of 450, 1050, 1500, and 3000 cGy were given at rates of 3.8, 7.5, 12.8, and 26.3 cGy/day. Hazard models were used to identify trends in mortality associated with radiation exposure. The probability of an acute death (related to hematopoietic aplasia) was positively associated with the total dose received and the rate at which the dose was delivered. Once an animal survived the initial hematopoietic effects of radiation exposure, the risk of death from causes other than cancer, while elevated, was far less responsive than the neoplastic end points. No relationship between tumor or chronic nontumor deaths and dose rate could be identified. However, survival curves for tumor mortality did separate into a pattern clearly dependent on the accumulated dose.  相似文献   

10.
Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates an initial step in cancer induction. Although previous investigations indicated a synergistic increase in transformation yields in the cells exposed to protons followed by HZE particles, these experiments did not differentiate between the effect of splitting of the dose into two fractions and that of changing the ion beams. To test this, we irradiated cells with split doses of either protons or HZE particles, then measured clonogenic survival and neoplastic transformation, as measured by colony formation in semi-solid soft agar medium. The data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion beam H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 min later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.  相似文献   

11.
12.
The prolonged ionizing radiation exposure at the absorbed doze rate of 2.6 mGy/hour and the total accumulated doze of about 20 cGy during different periods of the intrauterine development caused disorders of a coordinated development of organs and the decrease of endurance in physical activity in the postnatal ontogenesis of the irradiated posterity. The results obtained are comparable to the consequences of irradiation exposure of the fetus at the accumulated doze of 125 cGy during all stages of pregnancy and give grounds for considering radiation exposure at the above-mentioned rate (20 cGy) as a biologically significant factor.  相似文献   

13.
A model for sustained shedding of epidermal growth factor (EGF) in response to low doses of gamma radiation was developed based on a time delay in the feedback from mitogen-activated protein kinase (MAPK) activation to metalloprotease activity in an autocrine signaling process. We determined the kinetic parameters of our model using the data available for MAPK activation by gamma irradiation in the 1-2-Gy dose range and then showed that predictions of the model were consistent with experimental results for the kinetics of EGF shedding into the growth medium after exposure of human mammary epithelial cells to 1-5 cGy of gamma radiation in the presence of antibodies that block ligand binding to EGF receptors. The model allowed us to estimate the rate of radiation-induced cytokine release per cell from measurements of EGF concentration in the growth medium and to assess the effectiveness of EGF shedding and subsequent diffusion through the medium as a mechanism for signal transmission between hit cells and bystanders.  相似文献   

14.
We studied the effects of both: of the separate and of the combined exposure to gamma-radiation (absorbed doses for 30 days were 1.4-1.8 cGy, for 90 days were 4.3-5.4 cGy) and 232Th nitrate (in concentrations 6.0; 20.0 and 60.0 mg/l) on the CBA line mice thyroid gland. Hat is shown the thyroid gland response to the combined exposure is significant in an appearance of non-linear effects of interaction. The intensiveness of the radiation influence (time and doses) is revealed to affect on the biological response direction in thyroid gland. The intensity of this effect was depended on the correlation between the radiation activity and the chemical components concentration. The dispersive analyses showed that all the studied factors caused structural changes in thyroid gland in this experiment, but the gamma-radiation influence causes the primary contribution.  相似文献   

15.
Experiments were designed to examine the effects of radiation quality on specific gene expression within the first 3 h following radiation exposure in Syrian hamster embryo (SHE) cells. Preliminary work demonstrated the induction of c-fos and alpha-interferon genes following exposure to low-linear-energy-transfer (low-LET) radiations (X rays or gamma rays). More detailed experiments revealed induction of c-fos mRNA within the first 3 h following exposure to either X rays (75 cGy) or gamma rays (90 cGy). We could not detect induction of c-fos following exposure of SHE cells to fission-spectrum neutrons (high-LET) from the JANUS reactor administered at either high (12 cGy/min) or low (0.5 cGy/min) dose rates. Expression of alpha-interferon mRNA was similarly induced by low-LET radiations but only modestly by JANUS neutrons. The induction by gamma rays was dose-dependent, while induction by neutrons was specific for low doses and low dose rates. These experiments demonstrate the differential gene inductive response of cells following exposure to high- and low-LET radiations. These experiments suggest that these different qualities of ionizing radiation may have different mechanisms for inducing many of the cellular consequences of radiation exposure, such as cell survival and cell transformation.  相似文献   

16.
Conditioned taste aversion was used to evaluate the behavioral toxicity of exposure to high-energy iron particles (56Fe, 600 MeV/amu) in comparison to that of gamma photons (60Co), high-energy electrons, or fission neutrons. Exposure to high-energy iron particles (5-500 cGy) produced a dose-dependent taste aversion with a maximal effect achieved with a dose of 30 cGy. Gamma photons and electrons were the least effective stimuli for producing a conditioned taste aversion, with a maximal aversion obtained only after exposure to 500 cGy, while the effectiveness of fission neutrons was intermediate to that of photons and iron particles, and a maximal aversion was obtained with a dose of 100 cGy. In the second experiment, rats with lesions of the area postrema were exposed to iron particles (30 cGy), but failed to acquire a taste aversion. The results indicate that (1) high-energy iron particles are more toxic than other qualities of radiation and (2) similar mechanisms mediate the behavioral toxicity of gamma photons and high-energy iron particles.  相似文献   

17.
The influence of a 0.72 cGy/day dose rate of gamma-radiation on plasma membranes of peripheral blood lymphocytes of rats exposed to the doses of 1.5, 15, 30, 60 and 100 cGy was studied. Parameters characterizing the viscosity and the polarity of lipid bilayer and also an external membrane surface properties were examined using fluorescent probes pyrene and 1-anilinonaphthalene-8-sulfonate (ANS). Was shown the membrane structural parameters alterations after animal exposure to the doses of 1.5, 15, 60 and 100 cGy, being of a nonmonotonous nature as the dose accumulated. After exposure to the doses lower then than 30 cGy spectral changes were revealed not in each particular experiment that was probably caused by the individual peculiarities of radiation response development. After exposure to the doses higher than 30 cGy the changes were of reproducible character. After a 1.5 cGy dose a slight lipid bilayer polarity decrease and ANS binding parameter multidirectional changes were observed. After exposure to 15, 60 and to 100 cGy was shown polarity elevation and repartition of polar groups within the bilayer, the increase of viscosity of more polar membrane regions and also ANS fluorescence reduction mostly at the expense of quantum yield decrease. After the exposure of 60 cGy was observed a viscosity decrease in hydrophobic regions along with viscosity increase in more polar regions and after a 100 cGy dose accumulation an essential surface charge shift was found. Revealed alterations indicate the reorganization of external membrane surface and of intensification of oxidative processes in lipid bilayer.  相似文献   

18.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

19.
The short-term evolution of micronuclei derived from acentric fragments and whole chromosomes was studied in root tips of Vicia faba. Micronuclei were induced by X-rays (30 cGy and 120 cGy) and colchicine (10(-5) M and 3 X 10(-4) M). Frequencies of chromosome breakage or loss of micronuclei in interphase and mitotic cells were studied. The DNA content of micronuclei in interphase cells was also measured. Micronuclei derived from whole chromosome showed a higher probability to survive and to undergo mitotic condensation in synchrony with main nuclei than micronuclei derived from an acentric fragment. PCC (Premature Chromosome Condensation) was not observed for both types of micronuclei in Vicia faba, in contrast to the ones reported in mammalian cells in culture.  相似文献   

20.
The purpose of this work was to study the chronic influence of the high-energy radiation field formed in the atmosphere at an altitude of 10 to 30 km on the level of DNA damage in leukocytes of peripheral blood in mice. The external radiation field (behind the concrete shield) of the U-70 accelerator (Serpukhov, Russia) was used for these studies. This radiation field simulates the components and spectral composition of the high-energy radiation field formed in the atmosphere at an altitude of 10 to 30 km. Two groups of SHK line mice were chronically irradiated with a total dose equivalent to 21.5 and 31.5 cGy. The state of the genome of nucleated blood cells was assessed by the Comet assay (alkaline version) 72 h after completion of chronic irradiation. The level of genome damage in individual peripheral blood leukocytes of irradiated animals was compared with the basal level of DNA lesions in peripheral blood leukocytes of unirradiated control mice. The damage was expressed in %TDNA (the amount of DNA found in the "comet tail" in percent of total DNA in the "comet"). It was found that in mice exposed to the radiation field of the accelerator, the mean value of DNA damage was: %TDNA = 3.88 +/- 0.35% for a dose of 21.5 cGy and % TDNA = 6.00 +/- 0.82% for a dose of 31.5 cGy. In mice irradiated at an X-ray therapeutic device with a dose of 150 cGy 24 h before the examination, %TDNA was 2.27 +/- 0.34% and this did not differ from %TDNA in unirradiated mice, 2.68 +/- 0.56%. We suggest that the increased level of DNA damage observed in mice irradiated with 31.5 cGy from the mixed radiation field at the Serpukhov accelerator points to the development of genetic instability in their leukocytes as a result of chronic exposure of animals to this particular radiation field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号