首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Bacteriophage lambda gt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for lambda gt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from lambda gt11 phage were cloned directly into the pBR322 plasmid vector, bypassing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage lambda vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

2.
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.  相似文献   

3.
The replicon of the Streptomyces plasmid SCP2 was located on a 5.9-kilobase EcoRI-SalI restriction fragment. The SCP2 replicon was combined with Escherichia coli plasmid pBR322 and genes specifying neomycin resistance and thiostrepton resistance in streptomycetes to construct shuttle vectors that are useful for cloning in E. coli and streptomycetes.  相似文献   

4.
A functional map of Streptomyces coelicolor plasmid SCP2* was deduced from derivatives constructed by in vitro deletions. Functions were analyzed on bifunctional shuttle plasmids that contained pBR322 for selection and replication in Escherichia coli and fragments of SCP2* for replication in Streptomyces griseofuscus C581 and strains of Streptomyces lividans. The aph gene for neomycin resistance from Streptomyces fradiae and the tsr gene for thiostrepton resistance from Streptomyces azureus were incorporated as selectable antibiotic resistance markers in streptomycetes. An 11.8-kb sequence bounded by EcoRI and KpnI restriction sites contains the information for self-transfer and normal replication of the plasmid. A 5.9-kb EcoRI-SalI fragment contains all of the information for normal replication. Partial digestion generated a 2.2-kb Sau3A fragment that is sufficient for replication but it produces ten times higher plasmid copy number than the basic replicon. pHJL400 and PHJL401 are useful shuttle vectors containing the moderate-copy-number streptomycete plasmid combined with the E. coli plasmid pUC19. A 1.4-kb BclI-Sau3A fragment with an additional internal BclI site contains the minimal replicon but it produces 1000 times higher plasmid copy number than the basic replicon. pHJL302 is a useful shuttle vector containing the ultrahigh-copy-number streptomycete plasmid combined with the E. coli plasmid pUC19.  相似文献   

5.
Bacteriophage λgt11 has been used quite extensively for producing cDNA libraries. The cDNA inserts are usually subcloned into a plasmid vector for large scale production and analysis. However, isolating the recombinant DNA of interest from the phage clones can be a tedious task. Since the E. coli strain Y1088 used for λgt11 phage infection carries a pBR322-derived plasmid endogenously, we reasoned that this endogenous plasmid could be used directly for cloning the cDNA phage insert. In this report, we describe a method in which cDNA inserts from λgt11 phage were cloned directly into the pBR322 plasmid vector, by-passing the time-consuming procedures of preparing plasmid DNA as a subcloning vector. This method is likely to be extended to the cloning of DNA inserts derived from other phage λ vectors when bacteria containing endogenous pBR322 are used as host cells.  相似文献   

6.
K Awane  A Naito  H Araki  Y Oshima 《Gene》1992,121(1):161-165
Most vectors for Saccharomyces cerevisiae are shuttle vectors which can be both propagated and selected in Escherichia coli. The DNA segments, however, which are required for propagation in E. coli are unnecessary and moreover toxic in S. cerevisiae. To delete these harmful DNA fragments from the vector after it is introduced into S. cerevisiae cells, we propose a specific gene conversion mechanism of a yeast plasmid, pSR1. Plasmid pSR1 has a pair of inverted repeats (IRs) that divides the plasmid molecule into two unique regions. Intramolecular recombination frequently occurs at a pair of specific recombination sites in IRs catalyzed by recombinase R, encoded by a pSR1 plasmid gene. This R-mediated recombination is often accompanied by gene conversion in IRs. Thus, a 2.1-kb pBR322 sequence for the E. coli host ligated into one of the IRs of a composite plasmid was automatically and effectively eliminated when the plasmid was introduced into S. cerevisiae cells.  相似文献   

7.
A Ahmed 《Gene》1984,28(1):37-43
Insertion of a HindIII-EcoRI fragment carrying part of the gal operon from lambda gal+ into pBR322 yields a plasmid (pAA3) which confers strong galactose sensitivity on E. coli strains deleted for the gal operon. Sensitivity to galactose is caused by the expression of kinase and transferase (but not epimerase) genes from a promoter located in the tet gene of pBR322. Insertion of a DNA fragment carrying Tn9 at the HindIII junction blocks gal expression and produces a galactose-resistant phenotype. Hence, galactose resistance can be used to select DNA fragments cloned at the HindIII site. The system was used efficiently for cloning lambda, yeast, and human DNA. The cloned fragments can be screened directly for the presence of promoters by testing for tetracycline resistance. Alternatively, these plasmids can be used as cosmids for cloning large fragments of DNA at a number of sites. Construction of several related vectors is described.  相似文献   

8.
Construction of the shuttle cloning vectors for Escherichia coli-Brevibacterium flavum system is described. Expression of the Sp/Sm resistance determinant derived from the Corynebacterium plasmid pCG4 was registered in Escherichia coli cells. The genetic determinant for Sp/Sm resistance was shown to be located in a 2.2 kb PstI-SphI fragment by the deletion analysis mapping in Escherichia coli cells. Using Escherichia coli as a host we cloned the unique 0.8 kb EcoRI-EcoRI fragment of Brevibacterium flavum bacteriophage phi BSh6 in the plasmids with dual replication origins. Blocking of the shuttle vector transfer to Brevibacterium flavum by the insertion of bacteriophage phi BSh6 DNA was observed. The deletion of entire phage fragment or a specific part of it made it possible introduction of plasmids harboured by Escherichia coli cells into Brevibacterium flavum. A potential vector for homologous DNA cloning in Brevibacterium flavum was constructed.  相似文献   

9.
J R Broach  J N Strathern  J B Hicks 《Gene》1979,8(1):121-133
We have constructed a plasmid, YEp13, which when used in conjunction with transformation in yeast is a suitable vector for isolating specific yeast genes. The plasmid consists of pBR322, the LEU2 gene of yeast, and a DNA fragment containing a yeast origin of replication from 2 mu circule. We have demonstrated the utility of this cloning system by isolating the yeast gene encoding the arginine permease, CAN1, from a pool of random yeast DNA fragments inserted into YEp13.  相似文献   

10.
With the mutagenesis of specific, virulence-associated genes of Legionella pneumophila as the eventual goal, methods for gene transfer to these bacteria were developed. Following the observations of others that conjugative, broad-host-range plasmids could be transferred from Escherichia coli to L. pneumophila at low frequency, we constructed a small mobilizable vector, pTLP1, which carries oriV from pBR322, oriT from pRK2, Kmr from Tn5, and an L. pneumophila-derived fragment to permit chromosomal integration. In triparental matings including an E. coli with a conjugative (Tra+) helper plasmid, kanamycin-resistance was transferred from E. coli to L. pneumophila. Southern hybridization of L. pneumophila transconjugants showed that pTLP1 was replicated autonomously. Additional matings of plasmids having deletions or substitutions of pTLP1 sequences confirmed that replication in L. pneumophila requires oriV only. pTLP1 was maintained in L. pneumophila with passage on medium containing kanamycin but was rapidly lost after passage on nonselective medium. This plasmid instability in L. pneumophila is most likely due to rapid generation of plasmid-free segregants because of plasmid multimerization and low plasmid copy number. We conclude that mobilizable pBR322-derived plasmids can be used as shuttle vectors to transfer cloned genes to L. pneumophila, a feature that can be exploited for the purposes of mutagenesis or genetic complementation.  相似文献   

11.
The gene responsible for the malolactic fermentation of wine was cloned from the bacterium Lactobacillus delbrueckii into Escherichia coli and the yeast Saccharomyces cerevisiae. This gene codes for the malolactic enzyme which catalyzes the conversion of l-malate to l-lactate. A genetically engineered yeast strain with this enzymatic capability would be of considerable value to winemakers. L. delbrueckii DNA was cloned in E. coli on the plasmid pBR322, and two E. coll clones able to convert l-malate to l-lactate were selected. Both clones contained the same 5-kilobase segment of L. delbrueckii DNA. The DNA segment was transferred to E. coli-yeast shuttle vectors, and gene expression was analyzed in both hosts by using enzymatic assays for l-lactate and l-malate. When grown nonaerobically for 5 days, E. coli cells harboring the malolactic gene converted about 10% of the l-malate in the medium to l-lactate. The best expression in S. cerevisiae was attained by transfer of the gene to a shuttle vector containing both a yeast 2-mum plasmid and yeast chromosomal origin of DNA replication. When yeast cells harboring this plasmid were grown nonaerobically for 5 days, ca. 1.0% of the l-malate present in the medium was converted to l-lactate. The L. delbrueckii controls grown under these same conditions converted about 25%. A laboratory yeast strain containing the cloned malolactic gene was used to make wine in a trial fermentation, and about 1.5% of the l-malate in the grape must was converted to l-lactate. Increased expression of the malolactic gene in wine yeast will be required for its use in winemaking. This will require an increased understanding of the factors governing the expression of this gene in yeasts.  相似文献   

12.
Construction of a vector for cloning promoters in Bacillus subtilis   总被引:10,自引:0,他引:10  
L Band  D G Yansura  D J Henner 《Gene》1983,26(2-3):313-315
A versatile vector for cloning DNA fragments containing promoter activity in Bacillus subtilis was derived from plasmids pBR322, pUB110 and pC194. Selection is based on chloramphenicol resistance which is dependent upon the introduction of DNA fragments allowing expression of a chloramphenicol acetyl transferase gene. The plasmid contains a second selectable marker, neomycin resistance, and contains functional origins of replication for both B. subtilis and Escherichia coli.  相似文献   

13.
A DNA fragment has been constructed that contains many unique cloning sites not present in currently used Escherichia coli plasmid cloning vehicles. Insertion of this fragment into a modified version of pBR322 results in an AmpRTetR vector (pJRD158) of 3903 bp containing 28 unique cloning sites, four "almost unique" cloning sites, and eight unassigned unique 6-bp palindromes. The plasmid has the additional advantages of very high copy number and altered incompatibility. The latter permits it to be stably maintained in the same host as pBR322.  相似文献   

14.
S A Lacks  B Greenberg 《Gene》1991,104(1):11-17
A procedure was devised for sequential cloning of chromosomal DNA by cyclical integration and excision of a plasmid vector so that slightly overlapping chromosomal segments are successively cloned. The method depends on circular integration of the vector into the chromosome of a host nonpermissive for its replication, and on excision and reduction of a recombinant plasmid by use of an appropriately designed set of restriction enzyme sites in the vector. A vector suitable for cloning in Escherichia coli was constructed by combining a segment of pBR322 with a gene encoding chloramphenicol resistance expressible in many species. Sequential cloning was demonstrated in Streptococcus pneumoniae by extending a previously cloned segment of the region of the chromosome encoding maltosaccharide utilization by 8 kb in three cycles of cloning. Accuracy of the method was confirmed by hybridization of cloned DNA with chromosomal restriction fragments. It is pointed out that the similarity of the requisite genetic processes in bacteria and yeasts should allow use of the method for sequential cloning of yeast chromosomal DNA and of human or other mammalian DNA in artificial chromosomes of yeast.  相似文献   

15.
A 4-kb fragment active as an autonomously replicating sequence (ARS) from the Rhizobium meliloti symbiotic megaplasmid pSym-b was isolated by selecting for sequences that allowed a normally nonreplicative pBR322 derivative to replicate in R. meliloti. The resulting Escherichia coli-R. meliloti shuttle plasmid (mini-pSym-b) containing the ARS also replicated in the closely related Agrobacterium tumefaciens, but only in strains carrying pSym-b, suggesting that a megaplasmid-encoded trans-acting factor is required. The copy number of mini-pSym-b was approximately the same as that of the resident megaplasmid, and mini-pSym-b was unstable in the absence of antibiotic selection. An 0.8-kb DNA subfragment was sufficient for replication in both R. meliloti and A. tumefaciens. The minimal ARS exhibited several sequence motifs common to other replication origins, such as an AT-rich region, three potential DnA binding sites, a potential 13-mer sequence, and several groups of short direct repeats. Hybridization experiments indicated that there may be a related ARS on the other megaplasmid, pSym-a. The pSym-b ARS was mapped near exoA, within a region nonessential for pSym-b replication. These results suggest that the R. meliloti megaplasmids share conserved replication origins and that pSym-b contains multiple replication origins. Since the mini-pSym-b shuttle vector can coexist with IncP-1 broad-host-range plasmids, it is also now possible to use two compatible plasmids for cloning and genetic manipulation in R. meliloti.  相似文献   

16.
Shuttle cloning vectors for the cyanobacterium Anacystis nidulans.   总被引:13,自引:6,他引:7       下载免费PDF全文
Hybrid plasmids capable of acting as shuttle cloning vectors in Escherichia coli and the cyanobacterium Anacystis nidulans R2 were constructed by in vitro ligation. DNA from the small endogenous plasmid of A. nidulans was combined with two E. coli vectors, pBR325 and pDPL13, to create vectors containing either two selectable antibiotic resistance markers or a single marker linked to a flexible multisite polylinker. Nonessential DNA was deleted from the polylinker containing plasmid pPLAN B2 to produce a small shuttle vector carrying part of the polylinker (pCB4). The two polylinker-containing shuttle vectors, pPLAN B2 and pCB4, transform both E. coli and A. nidulans efficiently and provide seven and five unique restriction enzyme sites, respectively, for the insertion of a variety of DNA fragments. The hybrid plasmid derived from pBR325 (pECAN1) also transforms both E. coli and A. nidulans, although at a lower frequency, and contains two unique restriction enzyme sites.  相似文献   

17.
L Naumovski  E C Friedberg 《Gene》1983,22(2-3):203-209
We have constructed a plasmid vector (pNF2) which is a derivative of the multicopy yeast cloning vehicle YEp24. This derivative contains a single BamHI site flanked immediately on each side by SalI sites. The latter site was selected because it appears to be infrequent in yeast nuclear DNA. Thus, DNA fragments produced by partial digestion with enzymes (such as Sau3A) that cut at frequent intervals and leave single-stranded ends that have sequence homology with BamHI sites, can be conveniently subcloned into this site. Such fragments can then be excised intact by digestion with SalI enzyme. Plasmid pNF2 also contains the kanamycin-resistance (kanR) gene derived from Tn903 and confers resistance in yeast to the antibiotic G418. pNF2 was converted into an integrating vector (pNF3) by deleting a 2.2-kb EcoRI fragment containing a sequence that determines autonomous replication in yeast. Further deletion of a HindIII fragment containing the yeast URA3 gene converts the plasmid into one containing only pBR322 sequences plus the kanR gene (pNF4).  相似文献   

18.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

19.
20.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号