首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effect of various bile acids on hepatic type I 11β-hydroxysteroid dehydrogenase (11β-HSD1) activity in vitro. The rat liver microsome fraction was prepared and 11β-HSD1 activity was assayed using cortisol and corticosterone as substrates for the enzyme reaction. The substrate and various concentrations of bile acids were added to the assay mixture. After incubation, the products were extracted and analyzed using high-performance liquid chromatography. All bile acids tested except deoxycholic acid and 7-keto bile acids inhibited the 11β-HSD1 enzyme reaction to some degree. Ursodeoxycholic acid inhibited the activity less than cholic, chenodeoxycholic, and lithocholic acids. Deoxycholic acid and 7-keto bile acids did not inhibit, but enhanced the enzyme activity. Inhibitions of dehydrogenation by corticosterone were weaker than those by cortisol. Kinetic analysis revealed that the inhibition of 11β-HSD1 was competitive. The inhibition of 11β-HSD1 by bile acids depended on the three-dimensional structural difference in the steroid rings and the presence of the 7α-hydroxy molecule of the bile acids was important for the inhibition of rat hepatic 11β-HSD1 enzyme activity. These results suggest that bile acid administration might modulate 11β-HSD1 enzyme activity.  相似文献   

2.
The influence of human serum albumin (HSA) on the bile acid-mediated inhibition of liver microsomal type 1 11β-hydroxysteroid dehydrogenase (11β-HSD1) was studied in vitro. A rat liver microsomal fraction was prepared, and the 11β-HSD1 enzyme activity in the presence of various concentrations of bile acids and HSA was determined using hydrocortisone as the substrate. The products of the reaction were extracted and analyzed using high-performance liquid chromatography. The magnitude of the inhibition decreased with the addition of HSA in a dose-dependent manner. Four percent human albumin decreased the inhibitory effects of 100 μM chenodeoxycholic acid and lithocholic acid from 89.9?±?5.6 to 54.5?±?6.1 % and from 83.8?±?4.8 to 20.8?±?4.2 %, respectively. In contrast, ursodeoxycholic acid and deoxycholic acid showed no inhibitory effect on the enzyme activity in the presence of 4 % human serum albumin, and the addition of 1 % γ-globulin to the assay mixture in the presence of bile acids did not affect the enzyme activity. Our in vitro study showed that the addition of HSA ameliorated the inhibition of 11β-HSD1 and that the magnitude of the change is dependent on the species of bile acid, presumably based on the numbers of hydroxyl groups. These results suggest that HSA seems to protect the bile acid-mediated inhibition of 11β-HSD1 in the healthy subject. On the other hand, in the patients with obstructive biliary diseases, not only elevated serum bile acid but also the accompanying hypoalbuminemia is important to evaluate the pathophysiology of the bile acid-mediated inhibition of 11β-HSD1 of the disease.  相似文献   

3.
4.
A bile acid:3'phosphoadenosine-5'phosphosulfate:sulfotransferase (BAST I) from adult female rat liver cytosol has been purified 157-fold by a two-step isolation procedure. The N-terminal amino acid sequence of the 30,000 subunit has been determined for the first 35 residues. The Vmax of purified BAST I is 18.7 nmol/min per mg protein with N-(3-hydroxy-5 beta-cholanoyl)glycine (glycolithocholic acid) as substrate, comparable to that of the corresponding purified human BAST (Chen, L-J., and I. H. Segel, 1985. Arch. Biochem. Biophys. 241: 371-379). BAST I activity has a broad pH optimum from 5.5-7.5. Although maximum activity occurs with 5 mM MgCl2, Mg2+ is not essential for BAST I activity. The greatest sulfotransferase activity and the highest substrate affinity is observed with bile acids or steroids that have a steroid nucleus containing a 3 beta-hydroxy group and a 5-6 double bond or a trans A-B ring junction. These substrates have normal hyperbolic initial velocity curves with substrate inhibition occurring above 5 microM. Of the saturated 5 beta-bile acids, those with a single 3-hydroxy group are the most active. The addition of a second hydroxy group at the 6- or 7-position eliminates more than 99% of the activity. In contrast, 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) is an excellent substrate. The initial velocity curves for glycolithocholic and deoxycholic acid conjugates are sigmoidal rather than hyperbolic, suggestive of an allosteric effect. Maximum activity is observed at 80 microM for glycolithocholic acid. All substrates, bile acids and steroids, are inhibited by the 5 beta-bile acid, 3-keto-5 beta-cholanoic acid. The data suggest that BAST I is the same protein as hydrosteroid sulfotransferase 2 (Marcus, C. J., et al. 1980. Anal. Biochem. 107: 296-304).  相似文献   

5.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

6.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

7.
When grown in the presence of bile acids, two strains of Clostridium limosum were found to contain significant amounts of NADP-dependent 7 alpha/7 beta-hydroxysteroid dehydrogenase and NAD-dependent 7 alpha-hydroxysteroid dehydrogenase which were active against conjugated and unconjugated bile acids. No measurable activity could be found when deoxycholic acid (3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid) was used as substrate. No 7 beta-hydroxysteroid dehydrogenase activity and only a trace of 7 alpha-hydroxysteroid dehydrogenase activity could be demonstrated when bile acid was deleted from the growth medium. If bile acid was added after the time of inoculation, the amounts of 7 alpha/7 beta-hydroxysteroid dehydrogenase were greatly reduced. Enzyme enhancement was blocked by addition of rifampicin. The 7 alpha/7 beta-hydroxysteroid dehydrogenase components had pH optima of approximately 10.5. Both the 7 alpha/7 beta-hydroxysteroid dehydrogenase activities were heat-labile, with the 7 beta-component being the more stable of the two. When ranked according to the level of enzymes induced, the order in increasing bile acid induction power on an equimolar scale (0.4 mM) was: 7-ketodeoxycholic acid, cholic acid, chenodeoxycholic acid, and deoxycholic acid. Both 7-ketolithocholic acid and ursodeoxycholic acid were ineffective as enzyme inducers. Optimal induction was achieved with high concentrations of cholic acid (5 mM) and a harvest time of 24 hr. Addition of ursodeoxycholic acid to medium containing optimal concentrations of deoxycholic acid suppressed enzyme induction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

9.
Bile acid CoA:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids taurine and glycine. Rat liver BAT (rBAT) cDNA was isolated from a rat liver lambdaZAP cDNA library and expressed in Sf9 insect cells using a baculoviral vector. rBAT displayed 65% amino acid sequence homology with human BAT (hBAT) and 85% homology with mouse BAT (mBAT). Similar to hBAT, expressed rBAT was capable of forming both taurine and glycine conjugates with cholyl-CoA. mBAT, which is highly homologous to rBAT, forms only taurine conjugated bile acids (Falany, C. N., H. Fortinberry, E. H. Leiter, and S. Barnes. 1997. Cloning and expression of mouse liver bile acid CoA: Amino acid N-acyltransferase. J. Lipid Res. 38: 86-95). Immunoblot analysis of rat tissues detected rBAT only in rat liver cytosol following homogenization and ultracentrifugation. Subcellular localization of rBAT detected activity and immunoreactive protein in both cytosol and isolated peroxisomes. Rat bile acid CoA ligase (rBAL), the enzyme responsible for the formation of bile acid CoA esters, was detected only in rat liver microsomes. Treatment of rats with clofibrate, a known peroxisomal proliferator, significantly induced rBAT activity, message, and immunoreactive protein in rat liver. Peroxisomal membrane protein-70, a marker for peroxisomes, was also induced by clofibrate, whereas rBAL activity and protein amount were not affected. In summary, rBAT is capable of forming both taurine and glycine bile acid conjugates and the enzyme is localized primarily in peroxisomes in rat liver.  相似文献   

10.
A rapid and sensitive procedure is described for the assay of rat liver microsomal UDP-glucuronosyltransferase activity toward the bile acids chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid using the radioactively labeled bile acids as substrates. The unreacted bile acids were separated from the bile acid glucuronides formed as products of the enzymatic reactions by extraction with chloroform, leaving the bile acid glucuronides in the aqueous phases. The bile acid glucuronides were characterized by their mobilities in thin-layer chromatography and identified by their sensitivity to hydrolysis with β-glucuronidase and inhibition of hydrolysis by the specific β-glucuronidase inhibitor d-saccharic acid-1,4-lactone. Enzyme activities were optimal at pH 6.8 and were maximally stimulated about fourfold by the addition of the nonionic detergent Brij 58 at a concentration of 0.3 mg/mg microsomal protein. The kinetic parameters for the various bile acids as substrates were determined.  相似文献   

11.
In mammals, unconjugated bile acids formed in the intestine by bacterial deconjugation are reconjugated (N-acylamidated) with taurine or glycine during hepatocyte transport. Activation of the carboxyl group of bile acids to form acyl-adenylates is a likely key intermediate step in bile acid N-acylamidation. To gain more insight into the process of bile acid adenylate formation, we first synthesized the adenylates of five common, natural bile acids (cholic, deoxycholic, chenodeoxycholic, ursodeoxycholic, and lithocholic acid), and confirmed their structure by proton NMR. We then investigated adenylate formation by subcellular fractions of rat liver (microsomes, mitochondria, cytosol) using a newly developed LC method for quantifying adenylate formation. The highest activity was observed in the microsomal fraction. The reaction required Mg2+ and its optimum pH was about pH 7.0. In term of maximum velocity (Vmax) and the Michaelis constant (Km), the catalytic efficiency of the enzyme under the conditions used was highest with cholic acid of the bile acids tested. The formation of cholyl-adenylate was strongly inhibited by lithocholic and deoxycholic acid, as well as by palmitic acid; ibuprofen and valproic acid were weak inhibitors. In cholestatic disease, such adenylate formation might lead to subsequent bile acid conjugation with glutathione or proteins.  相似文献   

12.
We studied the effects of deoxycholic acid and its three epimers with beta-hydroxyl groups (3alpha,12beta-, 3beta,12alpha-, and 3beta,12beta-dihydroxy-5beta-cholan-24-oic acids), which were hydrophilic and less cytotoxic, on lipid peroxidation to elucidate the relationship between structural features of bile acids and their effect on lipid peroxidation. Taurodeoxycholate markedly increased the production of thiobarbituric acid-reactive substances, end products of lipid peroxidation, in isolated rat hepatocytes, whereas epimers of taurodeoxycholate did not. Deoxycholic acid inhibited mitochondrial NADH dehydrogenase and NADH:ferricytochrome c oxidoreductase activities, leading to free radical generation, whereas epimers of deoxycholic acid had no effect on mitochondrial enzymes. These findings suggested that hydrophobic bile acids cause lipid peroxidation by impairment of mitochondrial function, leading to the generation of free radicals; and epimerization of alpha-hydroxyl groups in the steroid nucleus to beta-hydroxyl groups results in a decrease of the toxic effects of deoxycholic acid on lipid peroxidation.  相似文献   

13.
Summary We investigated the effect of bile acids either alone or in combination with lectins on immunoglobulin (Ig) production in vitro of rat mesenteric lymph node (MLN) lymphocytes to examine their immunoregulatory activities. Among free bile acids examined, chenodeoxycholic acid stimulated IgE production by MLN lymphocytes and inhibited IgA production at the concentration of 0.3 mM, whereas cholic and deoxycholic acids exerted the comparable effect at 3 mM. Among conjugated bile acids, deoxycholic acid derivatives stimulated IgE production more strongly than cholic acid derivatives. On the other hand, free and conjugated bile acids did not affect IgG production. The IgE production by MLN lymphocytes was stimulated by concanavalin A and inhibited by pokeweed mitogen, and the effect of phytohemmagglutinin and lipopolysaccharide was marginal. These lectins did not affect IgA and IgG production by the lymphocytes. In the presence of lectins, free bile acids affected IgE production at 0.03 mM. These results suggest the possibility that bile acid is a stimulant for food allergy.  相似文献   

14.
Abstract: The bile acid composition of bile obtained from the hepatopancreatic ducts of three species of sperm whales (Cetacea: Physeteridae) was investigated. Bile acids were isolated by adsorption chromatography and analyzed by sequential HPLC, SIMS, and GLC-MS. In each species the dominant bile acids were deoxycholic acid (a secondary bile acid formed by bacterial 7α-dehydroxylation of cholic acid), and chenodeoxycholic acid (a primary bile acid) which together composed more than 86% of biliary bile acids in all three species. In Physeter catodon (sperm whale) deoxycholic acid constituted 79%, and in Kogia breviceps (pygmy sperm whale) it was 61% of biliary bile acids. The sperm whale, which differs from other whales in having a remnant of a large intestine, is the second mammal identified to date in which deoxycholic acid is the predominant bile acid. The high proportion of deoxycholic acid indicates that in the Physeteridae, anaerobic fermentation occurs in its cecum, and that bile acids undergo enterohepatic cycling. Also found were minor proportions of cholic acid, as well as bacterial derivatives of chenodeoxycholic acid (ursodeoxycholic acid, lithocholic acid, and the 12β-epimer of allo-deoxycholic acid). Bile acids were conjugated with taurine in all species; however, in the sperm whale ( Physeter ) glycine conjugates were present in trace proportions. The bile acid hydroxylation pattern (12α- but not 6α-hydroxylation), lack of primary 5α- (allo) bile acids, and presence of glycine conjugated bile acids suggests the possibility that sperm whales originated from ancient artiodactyls.  相似文献   

15.
Bile acid contents in isolated rat hepatocytes were determined by gas-liquid chromatography-mass spectrometry-selected ion monitoring with the use of deuterium-labeled internal standards. This allowed us first to monitor the actual amounts of not only major but also minor bile acid components present with sufficient sensitivity and specificity and to follow the changes of individual bile acids in cultured rat hepatocytes simultaneously. In freshly isolated rat hepatocytes, cholic and beta-muricholic acids were the major components, comprising 35 and 46% of the total bile acids, respectively. These two bile acids were found to be most actively synthesized during the first 2 h of incubation and continued to increase thereafter for up to 6 h (the end of the period studied). In contrast, chenodeoxycholic and alpha-muricholic acids, which are the precursors of beta-muricholic acid, showed slight increases only in the first hour of incubation and decreased thereafter. These results suggested that the conversion to beta-muricholic acid from chenodeoxycholic acid via alpha-muricholic acid occurred rapidly in cultured rat hepatocytes. The secondary bile acids such as deoxycholic, hyodeoxycholic, and 3 alpha, 12 beta-dihydroxy-5 beta-cholanoic acids declined steadily from the start of incubation, which supported the findings that further hydroxylation of these dihydroxy bile acids occurs in rat liver.  相似文献   

16.
The activity and isoenzymic spectrum of alkaline phosphatase of the blood serum and liver under cholemia caused by deoxycholic acid were compared in healthy animals and in animals with the affected liver. It is shown, that under conditions of the bile acids higher content in the organism due to deoxycholic acid, the total activity increases considerably and there appears an isoenzyme absent in the blood serum of healthy animals. Changes in the activity and isoenzymic spectrum of alkaline phosphatase under experimental cholemia developing against a background of the healthy and affected liver are characterized by certain peculiarities.  相似文献   

17.
The glucuronidation of 6-hydroxylated bile acids by rat liver microsomes was studied in vitro; for comparison, several major bile acids lacking a hydroxyl group in position 6 were also investigated. The highest reaction rates were found for lithocholic and deoxycholic acid (10.2 +/- 0.2 and 7.3 +/- 1.4 nmol/mg.min, respectively); our results for these substrates agree well with published values. Glucuronidation rates for the 6 beta-hydroxylated bile acids 3 alpha, 6 beta-dihydroxy-5 beta-cholanoate (murideoxycholate) and 3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoate (beta-muricholate) were only slightly lower (3.7 +/- 0.3 and 3.6 +/- 0.3 nmol/mg.min). 6 alpha-Hydroxylated bile acids were glucuronidated at rates that were lower than those for their 6 beta-hydroxy counterparts. Rigorous product identification by high-field proton NMR of methyl/acetyl derivatives revealed that while bile acids lacking a 6-hydroxyl group gave rise exclusively to the typical 3-O-glucuronide, the presence of a hydroxyl group in position 6 led to the formation, in ratios depending on the substrate, of three types of conjugate: the 3-O-, the 6-O-, and the carboxyl-linked (acyl-) glucurnide. The latter is the first example of an acyl glucuronide of a bile acid of conventional (C24) size.  相似文献   

18.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   

19.
Bile acid-induced inhibition of DNA synthesis by the regenerating rat liver in the absence of other manifestation of impairment in liver cell viability has been reported. Because in experiments carried out on in vivo models bile acids are rapidly taken up and secreted into bile, it is difficult to establish steady concentrations to which the hepatocytes are exposed. Thus, in this work, a dose-response study was carried out to investigate the in vitro cytotoxic effect of major unconjugated and tauro- (T) or glyco- (G) conjugated bile acids and to compare this as regards their ability to inhibit DNA synthesis. Viability of hepatocytes in primary culture was measured by Neutral red uptake and formazan formation after 6 h exposure of cells to bile acids. The rate of DNA synthesis was determined by radiolabeled thymidine incorporation into DNA. Incubation of hepatocytes with different bile acid species - cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), in the range of 10-1000 microM - revealed that toxicity was stronger for the unconjugated forms of CDCA and DCA than for CA and UDCA. Conjugation markedly reduced the effects of bile acids on cell viability. By contrast, the ability to inhibit radiolabeled thymidine incorporation into DNA was only slightly lower for taurodeoxycholic acid (TDCA) and glycodeoxycholic acid (GDCA) than for DCA. When the effect of these bile acids on DNA synthesis and cell viability was compared, a clear dissociation was observed. Radiolabeled thymidine incorporation into DNA was significantly decreased (-50%) at TDCA concentrations at which cell viability was not affected. Lack of a cause-effect relationship between both processes was further supported by the fact that well-known hepatoprotective compounds, such as tauroursodeoxycholic acid (TUDCA) and S-adenosylmethionine (SAMe) failed to prevent the effect of bile acids on DNA synthesis. In summary, our results indicate that bile acid-induced reduction of DNA synthesis does not require previous decreases in hepatocyte viability. This suggests the existence of a high sensitivity to bile acids of cellular mechanisms that may affect the rate of DNA repair and/or proliferation, which is of particular interest regarding the role of bile acids in the etiology of certain types of cancer.  相似文献   

20.
Unusual bile acids in umbilical cord blood and amniotic fluid of term newborns and in sera and urine from adult patients with cholestatic liver diseases were analyzed by use of gas-liquid chromatography-mass spectrometry. These bile acids were compared in order to elucidate possible similarities of bile acid metabolism between fetal and cholestatic liver. In both umbilical cord blood and amniotic fluid, 14 unusual bile acids were found in addition to normal bile acids (cholic, chenodeoxycholic, deoxycholic, and lithocholic acids), and 15, excluding ursodeoxycholic acid, were found in sera and urine from patients with cholestatic liver diseases. Of the unusual bile acids detected, 12 were common to both samples. Six unusual bile acids, 3 beta-hydroxy- and 3 beta,12 alpha-dihydroxy-5-cholenoic acids, 3 alpha,6 alpha,7 alpha-trihydroxy-5 beta-cholanoic acid, 1 beta,3 alpha,12 alpha-trihydroxy-1 beta,3 alpha,7 alpha-trihydroxy-, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholanoic acids were more abundant than others. They could be classified into three groups, i.e., unsaturated, 6-hydroxylated, and 1 beta-hydroxylated bile acids. 1 beta-Hydroxylated bile acids, which were not found in serum specimens, were detected in sera from umbilical cord blood and from patients with cholestatic liver diseases. The presence of these unusual bile acids suggested similarities between the altered metabolic states of the two groups examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号