首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plant cells, the plane of division is anticipated at the onset of mitosis by the presence of a preprophase band (PPB) of microtubules and F-actin at a cortical site that circumscribes the nucleus. During cytokinesis, the microtubule- and F-actin-based phragmoplast facilitates construction of a new cell wall and is guided to the forecast division site. Proper execution of this process is essential for establishing the cellular framework of plant tissues. The microtubule binding protein TANGLED1 (TAN1) of maize is a key player in the determination of division planes . Lack of TAN1 leads to misguided phragmoplasts and mispositioned cell walls in maize. In a yeast two-hybrid screen for TAN1-interacting proteins, a pair of related kinesins was identified that shares significant sequence homology with two kinesin-12 genes in Arabidopsis thaliana (A. thaliana): PHRAGMOPLAST ORIENTING KINESIN 1 and 2 (POK1, POK2). POK1 and POK2 are expressed in tissues enriched for dividing cells. The phenotype of pok1;pok2 double mutants strongly resembles that of maize tan1 mutants, characterized by misoriented mitotic cytoskeletal arrays and misplaced cell walls. We propose that POK1 and POK2 participate in the spatial control of cytokinesis, perhaps via an interaction with the A. thaliana TAN1 homolog, ATN.  相似文献   

2.
All land plants (embryophytes) use a phragmoplast for cytokinesis. Phragmoplasts are distinctive cytoskeletal structures that are instrumental in the deposition of new walls in both vegetative and reproductive phases of the life cycle. In meristems, the phragmoplast is initiated among remaining non-kinetochore spindle fibers between sister nuclei and expands to join parental walls at the site previously marked by the preprophase band of microtubules (PPB). The microtubule cycle and cell cycle are closely coordinated: the hoop-like cortical microtubules of interphase are replaced by the PPB just prior to prophase, the PPB disappears as the spindle forms, and the phragmoplast mediates cell plate deposition after nuclear division. In the reproductive phase, however, cortical microtubules and PPBs are absent and cytokinesis may be uncoupled from the cell cycle resulting in multinucleate cells (syncytia). Minisyncytia of 4 nuclei occur in microsporocytes and several (typically 8) nuclei occur in the developing megagametophyte. Macrosyncytia with thousands of nuclei may occur in the nuclear type endosperm. Cellularization of syncytia involves formation of adventitious phragmoplasts at boundaries of nuclear-cytoplasmic domains (NCDs) defined by radial microtubule systems (RMSs) emanating from non-sister nuclei. Once initiated in the region of microtubule overlap at interfaces of opposing RMSs, the adventitious phragmoplasts appear structurally identical to interzonal phragmoplasts. Phragmoplasts are constructed of multiple opposing arrays similar to what have been termed microtubule converging centers. The individual phragmoplast units are distinctive fusiform bundles of anti-parallel microtubules bisected by a dark mid-zone where vesicles accumulate and fuse into a cell plate.  相似文献   

3.
Eukaryotic cells have developed different mechanisms to establish the division plane. In plants, the position is determined before the onset of mitosis by the preprophase band (PPB). This ring of microtubules surrounds the nucleus and disappears completely by prometaphase. An unknown marker is left behind by the PPB, providing the necessary spatial cues during cytokinesis. At the position of the PPB, cortical actin is removed or modified to generate an actin-depleted zone that was proposed to provide the structural means for phragmoplast guidance. Here, we identify a plasma membrane domain that emerges at the onset of mitosis and persists until the end of cytokinesis. The narrow band in the plasma membrane corresponds to the position of the PPB and is prevented from accumulation of a GFP-tagged kinesin GFP-KCA1; hence, it is called the KCA-depleted zone (KDZ). The KDZ demarcates the cortical division site independent from the mitotic cytoskeleton. Cell divisions in the absence of a KDZ resulted in misplaced cell plates, suggesting that the PPB transmits a signal to the plasma membrane required for correct cell plate guidance and vesicular targeting to the cortical division site.  相似文献   

4.
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.  相似文献   

5.
Endosperm is emerging as a system for investigating the genetic control of wall placement and deposition in plant development. Development of endosperm progresses in distinct stages from a wall-less syncytial stage to a cellular stage that is entirely typical of plant meristems where the division plane is predicted by a preprophase band of microtubules (PPB) and cytokinesis is completed by formation of a cell plate in association with a phragmoplast. Four developmentally different types of walls, each associated with a different microtubule system, are sequentially produced: (1) free growing walls deposited in the absence of mitosis and phragmoplasts; (2) walls guided by cytoplasmic phragmoplasts formed adventitiously in the absence of mitosis; (3) walls formed by interzonal phragmoplasts in a cell cycle that lacks PPBs; and (4) wall deposition driven by interzonal phragmoplasts in a cycle that includes PPBs. We are using methods of differential screening to isolate cDNA clones corresponding in temporal and spatial pattern to the types of wall development, and are studying mutants for clues to the genetic controls of wall development.  相似文献   

6.
Marcus AI  Dixit R  Cyr RJ 《Protoplasma》2005,226(3-4):169-174
Summary. In most higher-plant cells, cortical microtubules form a tightly focused preprophase band (PPB) that disappears with the onset of prometaphase, but whose location defines the future location of the cell plate at the end of cytokinesis. It is unclear whether the PPB microtubules themselves designate the precise area where the cell plate will insert, or rather if these microtubules are responding to a hierarchical signal(s). Here we show that narrowing of the microtubules within the PPB zone is not necessary for proper division plane determination. In cultured tobacco BY-2 cells in which PPB microtubules are depolymerized, the phragmoplast can still accurately locate and insert at the proper site. The data do not support a role for PPB microtubule narrowing in focusing the signal that is used later by the phragmoplast to position the cell plate; rather, proper phragmoplast positioning is more likely a consequence of a non-microtubule positional element. Although the PPB microtubules do not directly mark the division site, we show that they are required for accurate spindle positioning, an activity that presets the future growth trajectory of the phragmoplast and is necessary for insuring high-fidelity cell plate positioning. Correspondence and reprints: Department of Biology, Pennsylvania State University, University Park, PA 16802, U.S.A. Present address: Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, U.S.A.  相似文献   

7.
The unique cytokinetic apparatus of higher plant cells comprises two cytoskeletal systems: a predictive preprophase band of microtubules (MTs), which defines the future division site, and the phragmoplast, which mediates crosswall formation after mitosis. We review features of plant cell division in an evolutionary context and from the viewpoint that the cell is a domain of cytoplasm (cytoplast) organized around the nucleus by a cytoskeleton consisting of a single "tensegral" unit. The term "tensegrity" is a contraction of "tensional integrity" and the concept proposes that the whole cell is organized by an integrated cytoskeleton of tension elements (e.g., actin fibers) extended over compression-resistant elements (e.g., MTs).During cell division, a primary role of the spindle is seen as generating two cytoplasts from one with separation of chromosomes a later, derived function. The telophase spindle separates the newly forming cytoplasts and the overlap between half spindles (the shared edge of two new domains) dictates the position at which cytokinesis occurs. Wall MTs of higher plant cells, like the MT cytoskeleton in animal and protistan cells, spatially define the interphase cytoplast. Redeployment of actin and MTs into the preprophase band (PPB) is the overt signal that the boundary between two nascent cytoplasts has been delineated. The "actin-depleted zone" that marks the site of the PPB throughout mitosis may be a more persistent manifestation of this delineation of two domains of cortical actin. The growth of the phragmoplast is controlled by these domains, not just by the spindle. These domains play a major role in controlling the path of phragmoplast expansion. Primitive land plants show different morphological changes that reveal that the plane of division, with or without the PPB, has been determined well in advance of mitosis.The green alga Spirogyra suggests how the phragmoplast system might have evolved: cytokinesis starts with cleavage and then actin-related determinants stimulate and positionally control cell-plate formation in a phragmoplast arising from interzonal MTs from the spindle. Actin in the PPB of higher plants may be assembling into a potential furrow, imprinting a cleavage site whose persistent determinants (perhaps actin) align the outgrowing edge of the phragmoplast, as in Spirogyra. Cytochalasin spatially disrupts polarized mitosis and positioning of the phragmoplast. Thus, the tensegral interaction of actin with MTs (at the spindle pole and in the phragmoplast) is critical to morphogenesis, just as they seem to be during division of animal cells. In advanced green plants, intercalary expansion driven by turgor is controlled by MTs, which in conjunction with actin, may act as stress detectors, thereby affecting the plane of division (a response clearly evident after wounding of tissue). The PPB might be one manifestation of this strain detection apparatus.  相似文献   

8.
Demarcation of the cortical division zone in dividing plant cells   总被引:2,自引:0,他引:2  
Somatic cytokinesis in higher plants involves, besides the actual construction of a new cell wall, also the determination of a division zone. Several proteins have been shown to play a part in the mechanism that somatic plant cells use to control the positioning of the new cell wall. Plant cells determine the division zone at an early stage of cell division and use a transient microtubular structure, the preprophase band (PPB), during this process. The PPB is formed at the division zone, leaving behind a mark that during cytokinesis is utilized by the phragmoplast to guide the expanding cell plate toward the correct cortical insertion site. This review discusses old and new observations with regard to mechanisms implicated in the orientation of cell division and determination of a cortical division zone.  相似文献   

9.
In plants, the preprophase band (PPB) of microtubules marks the cortical site where the cross-wall will fuse with the parental wall during cytokinesis . This band disappears before metaphase, and it is not known how the division plane is "memorized". One idea is that the PPB leaves behind molecules involved in the maturation of the cell plate . Here, we report on the proteomic isolation of a novel 187 kDa microtubule-associated protein, AIR9, conserved in land plants and trypanosomatid parasites. AIR9 decorates cortical microtubules and the PPB but is downregulated during mitosis. AIR9 reappears at the former PPB site precisely when the cortex is contacted by the outwardly growing cytokinetic apparatus. AIR9 then moves inward on the new cross-wall and thus forms a torus. Truncation studies show that formation of the torus requires a repeated domain separate from AIR9's microtubule binding site. Cell plates induced to insert outside the predicted division site do not elicit an AIR9 torus, suggesting that AIR9 recognizes a component of the former PPB. Such misplaced walls remain immature, based on their prolonged staining for the cell-plate polymer callose. We propose that AIR9 may be part of the mechanism ensuring the maturation of those cell plates successfully contacting the "programmed" cortical division site.  相似文献   

10.
The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers.  相似文献   

11.
Summary The aim of this study was to search for uncharacterized components of the plant cytoskeleton using monoclonal antibodies raised against spermatozoids of the fernPteridium (Marc et al. 1988). The cellular distribution of crossreacting immunoreactive material during the division cycle in wheat root tip cells was determined by immunofluorescence microscopy and compared to the fluorescence pattern obtained with antitubulin. Five antibodies are of special interest. Pas1D3 and Pas5F4 detect a diffuse cytoplasmic material, which, during mitosis, follows the distribution of microtubules (MTs) at the nuclear surface and in the preprophase band (PPB), spindle and phragmoplast. The immunoreactive material codistributes specifically with MT arrays of the mitotic apparatus and does not associate with interphase cortical MTs. Pas5D8 is relevant to the PPB and spatial control of cytokinesis. It binds in a thin layer at the cytoplasmic surface throughout the cell cycle, except when its coverage is transiently interrupted by an exclusion zone at the PPB site and later at the same site when the phragmoplast fuses with the parental cell wall.Pas2G6 reacts with a component of basal bodies and the flagellar band in thePteridium spermatozoid and recognizes irregularly shaped cytoplasmic vesicles in wheat cells. During interphase these particles form a cortical network.Pas6D7 binds to dictyosomes and dictyosome vesicles. At anaphase the vesicles accumulate at the equator and subsequently condense into the cell plate.Abbreviations MT microtubule - PPB preprophase band  相似文献   

12.
Ann L. Cleary 《Protoplasma》2001,215(1-4):21-34
Summary Tradescantia virginiana leaf epidermal cells were plasmolysed by sequential treatment with 0.8 M and 0.3 M sucrose. Plasmolysis revealed adhesion of the plasma membrane to the cell wall at sites coinciding with cytoskeletal arrays involved in the polarisation of cells undergoing asymmetric divisions — cortical actin patch — and in the establishment and maintenance of the division site —preprophase band of microtubules and filamentous (F) actin. The majority of cells retained adhesions at the actin patch throughout mitosis. However, only approximately 13% of cells formed or retained attachments at the site of the preprophase band. After the breakdown of the nuclear envelope, plasmolysis had a dramatic effect on spindle orientation, cell plate formation, and the plane of cytokinesis. Spindles were rotated at abnormal angles including tilted into the plane of the epidermis. Cell plates formed but were quickly replaced by vacuole-like intercellular compartments containing no Tinopal-stainable cell wall material. This compartment usually opened to the apoplast at one side, and cytokinesis was completed by the furrow extending across the protoplast. This atypical cytokinesis was facilitated by a phragmoplast containing microtubules and F-actin. Progression of the furrow was unaffected by 25 g of cytochalasin B per ml but inhibited by 10 M oryzalin. Phragmoplasts were contorted and misguided and cytokinesis prolonged, indicating severe disruption to the guidance mechanisms controlling phragmoplast expansion. These results are discussed in terms of cytoskeleton-plasma membrane-cell wall connections that could be important to the localisation of plasma membrane molecules defining the cortical division site and hence providing positional information to the cytokinetic apparatus, and/or for providing an anchor for cytoplasmic F-actin necessary to generate tension on the phragmoplast and facilitate its directed, planar expansion.Abbreviations ADZ actin-depleted zone - DIC differential interference contrast - GMC guard mother cell - MT microtubule - PPB preprophase band - SMC subsidiary mother cell Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

13.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

14.
The present work establishes a correlation between cell length and patterns of mitotic microtubular assemblies in Allium cepa L. root meristems. Binucleate cells were formed by a short caffeine treatment which aborted the formation of the phragmoplast during telophase. The largest binucleate cells (about 50 μm in length) behaved as two contiguous mononucleate cells in their next mitosis: they developed two preprophase bands (PPBs), one around each nucleus, where two spindles and two phragmoplasts were subsequently formed. On the other hand, the shortest binucleate cells (about 36 μm in length) formed a single PPB at the site of the aborted phragmoplast and, in the medium-sized cells (about 44 μm) in which the single PPB formed around the nucleus possessing the largest cytoplasmic environment, the two mitotic spindles and the new phragmoplasts moved to, or were assembled in the position of the phragmoplast that had been aborted one cycle earlier. Some rules derive from these observations. First of all, the aborted phragmoplast left a signal for microtubule positioning which was still operative one cycle later, in two-thirds of the bimitoses. Also, that formation of the PPB is dispensable. Moreover, its development does not always predict the future division plane, because of the presence of competing old signals which are stronger than those shed by the PPB in the same mitosis, but which fade away with distance. Finally, the positional signals were reinforced when the ratio of monomeric to fibrillar actin was increased by cytochalasin D during their shedding. When this drug was given simultaneously with caffeine, the frequency of bimitoses which, one cycle later, developed spindles and phragmoplasts in the positions of the old phragmoplast increased. On the other hand, those frequencies dropped in relation to control when the cytochalasin D treatment took place during bimitosis, indicating that at this time the treatment reinforced the signals produced in bimitosis itself. Received: 3 February 1997 / Accepted: 4 June 1997  相似文献   

15.
The preprophase band (PPB) of microtubules is thought to be involved in deciding the future division site. In this study, we investigated the effects of double PPBs on spindle formation and the directional decision of cytokinesis by using transgenic BY-2 cells expressing green fluorescent protein (GFP)-tubulin. At prophase, most of the cells with double PPBs formed multipolar spindles, whereas all cells with single PPBs formed normal bipolar spindles, clearly implicating the PPB in deciding the spindle poles. At metaphase, however, both cell types possessed the bipolar spindles, indicating the existence of correctional mechanism(s) at prometaphase. From prometaphase to metaphase, the spindles in double PPB cells altered their directions to become oblique to the cell-elongating axis, and these orientations were maintained in the phragmoplast and resulted in the oblique division planes. These oblique cell plates decreased when actin microfilaments were disrupted, and double actin-depleted zones (ADZs) appeared where the double PPBs had existed. These results suggest that the information necessary for proper cytokinesis may be transferred from the PPBs to the ADZs, even in the case of the double PPBs.  相似文献   

16.
A L Cleary  L G Smith 《The Plant cell》1998,10(11):1875-1888
The cytoskeleton plays a major role in the spatial regulation of plant cell division and morphogenesis. Arrays of microtubules and actin filaments present in the cell cortex during prophase mark sites to which phragmoplasts and associated cell plates are guided during cytokinesis. During interphase, cortical microtubules are believed to influence the orientation of cell expansion by guiding the pattern in which cell wall material is laid down. Little is known about the mechanisms that regulate these cytoskeleton-dependent processes critical for plant development. Previous work showed that the Tangled1 (Tan1) gene of maize is required for spatial regulation of cytokinesis during maize leaf development but not for leaf morphogenesis. Here, we examine the cytoskeletal arrays associated with cell division and morphogenesis during the development of tan1 and wild-type leaves. Our analysis leads to the conclusion that Tan1 is required both for the positioning of cytoskeletal arrays that establish planes of cell division during prophase and for spatial guidance of expanding phragmoplasts toward preestablished cortical division sites during cytokinesis. Observations on the organization of interphase cortical microtubules suggest that regional influences may play a role in coordinating cell expansion patterns among groups of cells during leaf morphogenesis.  相似文献   

17.
Summary Mitotic cell division of monoplastidic sporogones was investigated in the mossTimmiella barbuloides (Brid.) Moenk. (Pottiales, Bryophyta) by TEM. Division polarity of sporogones is established by the interphase position of the single oblong cup-shaped plastid, which is orientated with its long axis parallel to one of the cell walls. In preprophase the plastid elongates and its extremities bend at right angles. Plastid growth is directed by microtubules and accompanied by plastid tubules. The plastid begins the process of duplication by constricting centrally in the plane of the future cytokinetic septum. There is no preprophase band of microtubules at the division site. The large central nucleus becomes fusiform and aligned parallel to the main plastid axis. By the end of prophase the daughter plastids are positioned at the opposite poles of the nucleus where they probably function as nucleating or organizing centres for the spindle microtubules. Metaphase and anaphase spindles contain long sheets of ER. Cytokinesis involves the formation of a well developed phragmoplast.Abbreviations TEM transmission electron microscopy - PPB preprophase band of microtubules - ER endoplasmic reticulum  相似文献   

18.
Summary Studies of monoplastidic mitosis in hornworts (Bryophyta) using transmission electron microscopy and indirect immunofluorescence staining of microtubules have revealed that two mutually perpendicular microtubule systems predict division polarity in preprophase. Events of cytoplasmic reorganization in preparation for division occur in the following order: migration of the single plastid to a position perpendicular to the division site, constriction of the plastid where its midpoint intersects the division site, development of an axial system of microtubules parallel to the elongating plastid isthmus, and appearance of an atypical preprophase band of microtubules (PPB). The PPB is asymmetrical with a tight band of microtubules on the side over the plastid isthmus and a broad band of widely spaced microtubules over the nucleus. The axial system contributes directly to development of the spindle. In prometaphase, the axial system separates at the equator and additional microtubule bundles project from polar regions, creating two opposing halfspindles. The PPB is still present during asymmetrical organization of the spindle and microtubules extending from the broad portion of the PPB to poles appear to be incorporated into the developing spindle. Dynamic changes in the microtubular cytoskeleton demonstrate (1) intimate relationship of plastid and nuclear division, (2) contribution of preprophase/prophase microtubule systems to spindle development in monoplastidic cells, and (3) dynamic reorientation of microtubules from one system to another.  相似文献   

19.
The cytoskeleton and spatial control of cytokinesis in the plant life cycle   总被引:6,自引:0,他引:6  
Summary One of the intriguing aspects of development in plants is the precise control of division plane and subsequent placement of walls resulting in the specific architecture of tissues and organs. The placement of walls can be directed by either of two microtubule cycles. The better known microtubule cycle is associated with control of the future division plane in meristematic growth where new cells become part of tissues. The future daughter domains are determined before the nucleus enters prophase and the future site of cytokinesis is marked by a preprophase band (PPB) of cortical microtubules. The spindle axis is then organized in accordance with the PPB and, following chromosome movement, a phragmoplast is initiated in the interzone and expands to join with parental walls at the site previously occupied by the PPB. The alternative microtubule cycle lacks both the hooplike cortical microtubules of interphase and the PPB. Wall placement is determined by a radial microtubule system that defines a domain of cytoplasm either containing a nucleus or destined to contain a nucleus (the nuclear cytoplasmic domain) and controls wall placement at its perimeter. This more flexible system allows for cytoplasmic polarization and migration of nuclei in coenocytes prior to cellularization. The uncoupling of cytokinesis from karyokinesis is a regular feature of the reproductive phase in plants and results in specific, often unusual, patterns of cells which reflect the position of nuclei at the time of cellularization (e.g., the arrangement of spores in a tetrad, cells of the male and female gametophytes of angiosperms, and the distinctive cellularization of endosperm). Thus, both microtubule cycles are required for completion of plant life cycles from bryophytes to angiosperms. In angiosperm seed development, the two methods of determining the boundaries of domains where walls will be deposited are operative side by side. Whereas the PPB cycle drives embryo development, the radial-microtubule-system cycle drives the common nuclear type of endosperm development from the syncytial stage through cellularization. However, a switch to the PPB cycle can occur in endosperm, as it does in barley, when peripheral cells divide to produce a multilayered aleurone. The triggers for the switch between microtubule cycles, which are currently unknown, are key to understanding plant development.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

20.
Summary Indirect immunodetection of tubulin showed that the herbicide carbetamide activated silent signals left by the preprophase band (PPB) and by old phragmoplasts. Thus, after half an hour of treatment, 5.3% of anaphases inAllium cepa L. meristems showed spindle microtubules pointing to sites of the longitudinal cell membranes which, under control conditions, would only start attracting microtubules from the growing phragmoplast at late telophase. After 2 h, 12.8% of the telophases showed not only the expected phragmoplast between the two sister nuclei, but one or two additional phragmoplasts, at one or both cell tips, the sites of the phragmoplasts from the telophases of previous cycles. A few binucleate cells, obtained by aborting phragmoplast formation by a short caffeine treatment, developed three phragmoplasts in their next mitosis (bimitosis) in the presence of carbetamide: one between each sister pair of telophasic nuclei plus an extra one. The latter also occupied the site of the phragmoplast of the telophase of the previous cycle.Abbreviations PPB preprophase band of microtubules - EGTA ethylene glycol-bis(-amino-ethyl-ether)-N,N,N,N-tetraacetic acid - PMSF phenylmethylsulfonyl-fluoride - PIPES piperazine-N,N-bis(2-ethane sulphonic acid) - PBS phosphate-buffered saline - DAPI 4,6-diamidino-2-phenylindole  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号