首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CD72, a 45-kDa type II transmembrane glycoprotein carrying an ITIM motif, is believed to be an inhibitory coreceptor of the BCR. Mature B cells lacking CD72 show enhanced Ca(2+) mobilization and are hyperproliferative in response to BCR ligation. However, the signal transduction pathways downstream of BCR signaling that transmit the inhibitory effect of CD72 in mature B cells remain unknown. To address this question, we used hen egg lysozyme-specific BCR transgenic mice to elucidate the differential cell signaling between wild-type and CD72-deficient B cells in response to hen egg lysozyme Ag stimulation. Our results demonstrate that CD72 predominantly down-regulates the major signal transduction pathways downstream of the BCR, including NF-AT, NF-kappaB, ERK, JNK, p38-MAPK, and PI3K/Akt in mature B cells. CD72 ligation with anti-CD72 Ab (K10.6), which mimics the binding of CD100 (a natural ligand for CD72) to release the inhibitory function of CD72, augments cell proliferation, Ca(2+) flux, IkappaBalpha activation, and ERK MAPK activity upon Ag stimulation in wild-type B cells. In addition, we show direct evidence that CD72 promotes cell cycle arrest and apoptosis after Ag stimulation in mature B cells. Taken together, our findings conclude that CD72 plays a dominant role as a negative regulator of BCR signaling in primary mature B lymphocytes.  相似文献   

2.
Bystander B cells may be initially stimulated through CD40, which enhances susceptibility to Fas-mediated apoptosis, before encountering Ag, which produces Fas resistance. A key issue in this process is to what extent CD40 cross-talk might affect subsequent BCR signaling. It has previously been shown that CD40 engagement bypasses or mitigates the need for Bruton's tyrosine kinase in subsequent BCR signaling for NF-kappaB activation. However, the full extent of the effects of CD40 on BCR signaling has not been delineated. In the present study we evaluated the possibility that CD40-mediated cross-talk also affects another principal outcome of BCR signaling: MAPK activation. We found that prior stimulation of primary murine B cells with CD40L markedly enhanced the level of ERK and JNK (but not p38 MAPK) phosphorylation produced by subsequently added anti-Ig Ab, and much, but not all, of this enhancement was independent of PI3K and phospholipase C. CD40L treatment similarly enhanced BCR-induced MAPK kinase (MEK) phosphorylation, and MEK was required for enhancement of ERK. Although BCR-induced c-Raf phosphorylation was also enhanced by prior CD40L treatment, c-Raf was not required for MEK/ERK phosphorylation. These results identify a novel system of receptor cross-talk between CD40 and BCR and indicate that the effects of CD40 engagement on subsequent BCR stimulation spread beyond NF-kappaB to involve the MAPK pathway.  相似文献   

3.
4.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

5.
6.
CD72 is a 45-kDa B cell transmembrane glycoprotein that has been shown to be important for B cell activation. However, whether CD72 ligation induces B cell activation by delivering positive signals or sequestering negative signals away from B cell receptor (BCR) signals remains unclear. Here, by comparing the late signaling events associated with the mitogen-activated protein kinase pathway, we identified many similarities and some differences between CD72 and BCR signaling. Thus, CD72 and BCR activated the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinase. Both CD72- and BCR-mediated ERK and JNK activation required protein kinase C activity, which was equally important for CD72- and BCR-induced B cell proliferation. However, CD72 induced stronger JNK activation compared with BCR. Surprisingly, the JNK activation induced by both BCR and CD72 is Btk independent. Although both CD72 and BCR induced Btk-dependent ERK activation, CD72-mediated proliferation is more resistant to blocking of ERK activity than that of BCR, as shown by the proliferation response of B cells treated with PD98059 and dibutyryl cAMP, agents that inhibit ERK activity. Most importantly, CD72 signaling compensated for defective BCR signaling in X-linked immunodeficiency B cells and partially restored the proliferation response of X-linked immunodeficiency B cells to anti-IgM ligation. These results suggest that CD72 signals B cells by inducing BCR-independent positive signaling pathways.  相似文献   

7.
Background Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. Results Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. Conclusion The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.  相似文献   

8.
9.
10.
11.
Antigen receptor signaling is known to activate NF-kappaB in lymphocytes. While T-cell-receptor-induced NF-kappaB activation critically depends on novel protein kinase C theta (PKCtheta), the role of novel PKCs in B-cell stimulation has not been elucidated. In primary murine splenic B cells, we found high expression of the novel PKCs delta and epsilon but only weak expression of the theta isoform. Rottlerin blocks phorbol ester (phorbol myristate acetate [PMA])- or B-cell receptor (BCR)-mediated NF-kappaB and c-Jun N-terminal kinase (JNK) activation in primary B and T cells to a similar extent, suggesting that novel PKCs are positive regulators of signaling in hematopoietic cells. Mouse 70Z/3 pre-B cells have been widely used as a model for NF-kappaB activation in B cells. Similar to the situation in splenic B cells, rottlerin inhibits BCR and PMA stimulation of NF-kappaB in 70Z/3 cells. A derivative of 70Z/3 cells, 1.3E2 cells, are defective in NF-kappaB activation due to the lack of the IkappaB kinase (IKKgamma) protein. Ectopic expression of IKKgamma can rescue NF-kappaB activation in response to lipopolysaccharides (LPS) and interleukin-1beta (IL-1beta), but not to PMA. In addition, PMA-induced activation of the mitogen-activated protein kinase JNK is blocked in 1.3E2 cells, suggesting that an upstream component common to both pathways is either missing or mutated. Analysis of various PKC isoforms revealed that exclusively PKCtheta was absent in 1.3E2 cells while it was expressed in 70Z/3 cells. Stable expression of either novel PKCtheta or -delta but not classical PKCbetaII in 1.3E2 IKKgamma-expressing cells rescues PMA activation of NF-kappaB and JNK signaling, demonstrating a critical role of novel PKCs for B-cell activation.  相似文献   

12.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

13.
The members of the tumor necrosis factor (TNF) family play pivotal roles in the regulation of the immune system. LIGHT is a type II transmembrane protein belonging to the TNF family that was originally identified as a weak inducer of apoptosis. This cytokine has been extensively studied for its role in T cell regulation. Recently, we identified its role in inducing maturation of dendritic cells, such as LIGHT upregulated CD86 expression on dendritic cells in our previous report. However, the signal transduction pathway on this regulation remains unknown. In this study, we found that LIGHT activated NF-kappaB, p44/42 MAPK, but not JNK. LIGHT upregulates CD86 expression on DCs through activation of NF-kappaB, but not p44/42 signal pathway, because inhibition of NF-kappaB activity by its inhibitor could blunt the effect of LIGHT in up-regulation of CD86 expression, but neither inhibitor of p44/42 MAPK nor JNK inhibitor has this effect. Thus we demonstrate that LIGHT regulates CD86 expression through NF-kappaB signal transduction pathway but neither p44/42 MAPK nor JNK/AP-1 signaling pathway. We conclude that NF-kappaB signal plays a key role in LIGHT-mediated upregulation of CD86 expression.  相似文献   

14.
Binding of activated forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to cell surface-associated GRP78 on 1-LN human prostate cancer cells causes their proliferation. We have now examined the interplay between Akt activation, regulation of apoptosis, the unfolded protein response, and activation of NF-kappaB in alpha2M*-induced proliferation of 1-LN cells. Exposure of cells to alpha2M* (50 pM) induced phosphatidylinositol 3-kinase-dependent activation of Akt by phosphorylation at Thr-308 and Ser-473 with a concomitant 60-80% increase in Akt-associated kinase activity. ERK1/2 and p38 MAPK were also activated, but there was only a marginal effect on JNK activation. Treatment of 1-LN cells with alpha2M* down-regulated apoptosis and promoted NF-kappaB activation as shown by increases of Bcl-2, p-Bad(Ser-136), p-FOXO1(Ser-253), p-GSK3beta(Ser-9), XIAP, NF-kappaB, cyclin D1, GADD45beta, p-ASK1(Ser-83), and TRAF2 in a time of incubation-dependent manner. alpha2M* treatment of 1-LN cells, however, showed no increase in the activation of caspase -3, -9, or -12. Under these conditions, we observed increased unfolded protein response signaling as evidenced by elevated levels of GRP78, IRE1alpha, XBP-1, ATF4, ATF6, p-PERK, p-eIF2alpha, and GADD34 and reduced levels of GADD153. Silencing of GRP78 gene expression by RNAi suppressed activation of Akt(Thr-308), Akt(Ser-473), and IkappaB kinase alpha kinase. The effects of alpha2M* on the NF-kappaB activation, antiapoptotic signaling, unfolded protein response signaling, and proapoptotic signaling were also reversed by this treatment. In conclusion, alpha2M* promotes cellular proliferation of 1-LN prostate cancer cells by activating MAPK and Akt-dependent signaling, down-regulating apoptotic signaling, and activating unfolded protein response signaling.  相似文献   

15.
Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. B cell receptor (BCR) signaling activates HPK1 by inducing BLNK/HPK1 interaction. Whether HPK1 can reciprocally regulate BLNK during BCR signaling is unknown. Here, we show that HPK1-deficient B cells display hyper-proliferation and hyper-activation of IκB kinase and MAPKs (ERK, p38, and JNK) upon the ligation of BCR. HPK1 attenuates BCR-induced cell activation via inducing BLNK threonine 152 phosphorylation, which mediates BLNK/14-3-3 binding. Furthermore, threonine 152-phosphorylated BLNK is ubiquitinated at lysine residues 37, 38, and 42, leading to attenuation of MAPK and IκB kinase activation in B cells during BCR signaling. These results reveal a novel negative feedback regulation of BCR signaling by HPK1-mediated phosphorylation, ubiquitination, and subsequent degradation of the activated BLNK.  相似文献   

16.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

17.
Abnormalities in lymphocyte signaling cascades are thought to play an important role in the development of autoimmune disease. However, the large amount of cellular material needed for standard biochemical assessment of signaling status has made it difficult to evaluate putative abnormalities completely using primary lymphocytes. The development of technology to employ intracellular staining and flow cytometry to assess the signaling status of individual cells has now made it possible to delineate the perturbations that are present in lymphocytes from patients with autoimmune disease. As an example, human B cells from the Ramos B cell line and the periphery of systemic lupus erythematosus (SLE) patients or normal nonautoimmune controls were assessed for activation of the NF-kappaB and mitogen activated protein kinase (MAPK) signaling cascades by intracellular multiparameter flow cytometric analysis and biochemical Western blotting. In combination with fluorochrome conjugated antibodies specific for surface proteins that define B cell subsets, antibodies that recognize activated, or phosphorylated inhibitors of kappaB (IkappaB) as well as the extracellular regulated kinase (ERK), jun N-terminal kinase (JNK) or p38 MAPKs were used to stain fixed and permeabilized human B cells and analyze them flow cytometrically. Examination of the known signaling pathways following engagement of CD40 on human B cells confirmed that intracellular flow cytometry and Western blotting equivalently assay CD154-induced phosphorylation and degradation of IkappaB proteins as well as phosphorylation of the MAPKs ERK, JNK and p38. In addition, B cells from the periphery of SLE patients had a more activated status immediately ex vivo as assessed by intracellular flow cytometric analysis of phosphorylated ERK, JNK and p38 when compared with B cells from the periphery of normal, nonautoimmune individuals. Together, these results indicate that multiparameter intracellular flow cytometric analysis of signaling pathways, such as the NF-kappaB and MAPK cascades, can be used routinely to assess the activation status of a small number of cells and thus delineate abnormalities in signaling molecules expressed in primary lymphocytes from patients with autoimmune disease.  相似文献   

18.
Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and anti-apoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases. Here we report on novel cyclic AMP-dependent mechanisms of BCR-induced growth arrest and apoptosis in the immature B lymphoma cell line WEHI-231. BCR signaling to ERK1/2 and Akt requires cyclic AMP-regulated Epac, the latter acting as a guanine nucleotide exchange factor for Rap1 and H-Ras independent of protein kinase A. Importantly, activation of endogenously expressed Epac by a specific cyclic AMP analog enhanced the induction of growth arrest (reduced DNA synthesis) and apoptosis (nuclear condensation, annexin V binding, caspase-3 cleavage and poly-ADP-ribose polymerase processing) by the BCR. Our data indicate that cyclic AMP-dependent Epac signals to ERK1/2 and Akt upon activation of Rap1 and H-Ras, and is involved in BCR-induced growth arrest and apoptosis in WEHI-231 cells.  相似文献   

19.
Persistence was established after most of the SARS-CoV-infected Vero E6 cells died. RNA of the defective interfering virus was not observed in the persistently infected cells by Northern blot analysis. SARS-CoV diluted to 2 PFU failed to establish persistence, suggesting that some particular viruses in the seed virus did not induce persistent infection. Interestingly, a viral receptor, angiotensin converting enzyme (ACE)-2, was down-regulated in persistently infected cells. G418-selected clones established from parent Vero E6 cells, which were transfected with a plasmid containing the neomycin resistance gene, were infected with SARS-CoV, resulting in a potential cell population capable of persistence in Vero E6 cells. Our previous studies demonstrated that signaling pathways of extracellular signal-related kinase (ERK1/2), c-Jun N-terminal protein kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3'-kinase (PI3K)/Akt were activated in SARS-CoV-infected Vero E6 cells. Previous studies also showed that the activation of p38 MAPK by viral infection-induced apoptosis, and a weak activation of Akt was not sufficient to protect from apoptosis. In the present study, we showed that the inhibitors of JNK and PI3K/Akt inhibited the establishment of persistence, but those of MAPK/ERK kinase (MEK; as an inhibitor for ERK1/2) and p38 MAPK did not. These results indicated that two signaling pathways of JNK and PI3K/Akt were important for the establishment of persistence in Vero E6 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号