首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mariner family transposable elements are widespread in animals, but their regulation is poorly understood, partly because only two are known to be functional. These are particular copies of the Dmmar1 element from Drosophila mauritiana, for example, Mos1, and the consensus sequence of the Himar1 element from the horn fly, Haematobia irritans. An in vitro transposition system was refined to investigate several parameters that influence the transposition of Himar1. Transposition products accumulated linearly over a period of 6 hr. Transposition frequency increased with temperature and was dependent on Mg2+ concentration. Transposition frequency peaked over a narrow range of transposase concentration. The decline at higher concentrations, a phenomenon observed in vivo with Mos1, supports the suggestion that mariners may be regulated in part by "overproduction inhibition." Transposition frequency decreased exponentially with increasing transposon size and was affected by the sequence of the flanking DNA of the donor site. A noticeable bias in target site usage suggests a preference for insertion into bent or bendable DNA sequences rather than any specific nucleotide sequences beyond the TA target site.  相似文献   

2.
Butler MG  Chakraborty SA  Lampe DJ 《Genetica》2006,127(1-3):351-366
Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of “average” transposons.  相似文献   

3.
Helicobacter pylori mutagenesis by mariner in vitro transposition   总被引:3,自引:0,他引:3  
We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ-marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments.  相似文献   

4.
We have previously characterized the early intermediates of mariner transposition. Here we characterize the target interactions that occur later in the reaction. We find that, in contrast to the early transposition intermediates, the strand transfer complex is extremely stable and difficult to disassemble. Transposase is tightly bound to the transposon ends constraining rotation of the DNA at the single strand gaps in the target site flanking the element on either side. We also find that although the cleavage step requires Mg2+ or Mn2+ as cofactor, the strand transfer step is also supported by Ca2+, suggesting that the structure of the active site changes between cleavage and insertion. Finally, we show that, in contrast to the bacterial cut and paste transposons, mariner target interactions are promiscuous and can take place either before or after cleavage of the flanking DNA. This is similar to the behavior of the V(D)J system, which is believed to be derived from an ancestral eukaryotic transposon. We discuss the implications of promiscuous target interactions for promoting local transposition and whether this is an adaptation to facilitate the invasion of a genome following horizontal transfer to a new host species.  相似文献   

5.
Burkholderia psedudomallei is the etiologic agent of melioidosis, and the bacterium is listed as a potential agent of bioterrorism because of its low infectious dose, multiple infectious routes, and intrinsic antibiotic resistance. To further accelerate research with this understudied bacterium, we developed a Himar1-based random mutagenesis system for B. pseudomallei (HimarBP). The transposons contain a Flp recombinase-excisable, approved kanamycin resistance selection marker and an R6K origin of replication for transposon rescue. In vivo mutagenesis of virulent B. pseudomallei strain 1026b was highly efficient, with up to 44% of cells transformed with the delivery plasmid harboring chromosomal HimarBP insertions. Southern analyses revealed single insertions with no evidence of delivery plasmid maintenance. Sequence analysis of rescued HimarBP insertions revealed random insertions on both chromosomes within open reading frames and intergenic regions and that the orientation of insertions was largely unbiased. Auxotrophic mutants were obtained at a frequency of 0.72%, and nutritional supplementation experiments supported the functional assignment of genes within the respective biosynthetic pathways. HimarBP insertions were stable in the absence of selection and could be readily transferred between naturally transformable strains. Experiments with B. thailandensis suggest that the newly developed HimarBP transposons can also be used for random mutagenesis of other Burkholderia spp., especially the closely related species B. mallei. Our results demonstrate that comprehensive transposon libraries of B. pseudomallei can be generated, providing additional tools for the study of the biology, pathogenesis, and antibiotic resistance of this pathogen.  相似文献   

6.
Francisella tularensis is the intracellular pathogen that causes human tularemia. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of entry. We report the development of a Himar1-based random mutagenesis system for F. tularensis (HimarFT). In vivo mutagenesis of F. tularensis live vaccine strain (LVS) with HimarFT occurs at high efficiency. Approximately 12 to 15% of cells transformed with the delivery plasmid result in transposon insertion into the genome. Results from Southern blot analysis of 33 random isolates suggest that single insertions occurred, accompanied by the loss of the plasmid vehicle in most cases. Nucleotide sequence analysis of rescued genomic DNA with HimarFT indicates that the orientation of integration was unbiased and that insertions occurred in open reading frames and intergenic and repetitive regions of the chromosome. To determine the utility of the system, transposon mutagenesis was performed, followed by a screen for growth on Chamberlain's chemically defined medium (CDM) to isolate auxotrophic mutants. Several mutants were isolated that grew on complex but not on the CDM. We genetically complemented two of the mutants for growth on CDM with a newly constructed plasmid containing a nourseothricin resistance marker. In addition, uracil or aromatic amino acid supplementation of CDM supported growth of isolates with insertions in pyrD, carA, or aroE1 supporting the functional assignment of genes within each biosynthetic pathway. A mutant containing an insertion in aroE1 demonstrated delayed replication in macrophages and was restored to the parental growth phenotype when provided with the appropriate plasmid in trans. Our results suggest that a comprehensive library of mutants can be generated in F. tularensis LVS, providing an additional genetic tool to identify virulence determinants required for survival within the host.  相似文献   

7.
Hemagglutination by Neisseria meningitidis   总被引:5,自引:0,他引:5  
The direct agglutination of erythrocytes by Neisseria meningitidis was studied as a marker for adherence. Hemagglutination (HA) was studied by slide test (5-min incubation) and by dilutions in microtitre plates (20-h incubation). Meningococci that were freshly isolated from subjects agglutinated only human cells by slide test but human, dog, rabbit, guinea pig, and rat cells were agglutinated in the microtitre system. Newly isolated strains were piliated and HA positive but pili were lost after 10 passages on agar, and bacteria became HA negative. HA could be maintained by "affinity culturing," which selected markedly adhesive bacteria: erythrocytes with adherent meningococci were isolated and cultured on agar. This procedure was repeated daily. HA titres were unaffected by mannose but were reduced by sonic disruption, trypsinization, ultraviolet irradiation, heating (65 degrees C), and formaldehyde. Encapsulated (serogroupable) bacteria had low HA titres compared with nongroupable strains, and purified capsular polysaccharides A and C inhibited HA. Meningococcal HA is probably mediated by pili and modified by other factors such as encapsulation. Colonial variation was not a reliable indicator of piliation, and HA is best used for this purpose.  相似文献   

8.
9.
Abstract Heat-killed Neisseria meningitidis was found to be mitogenic for human peripheral blood lymphocytes (PBL). Separation of lymphocytes by rosetting with sheep erythrocytes indicated that both rosette-forming cells (E+, T-enriched) and nonrosetting cells (E, B-enriched) were induced to proliferate by the bacteria. Following meningococcal stimulation, E cells and PBL displayed proliferative responses of similar magnitude and followed essentially the same kinetics with peak responses occurring after 3–4 days of culture. By comparison, E+ lymphocytes gave significantly higher responses and required a longer incubation period (5–7 days) to reach maximum levels of proliferative activity.  相似文献   

10.
Group B Neisseria meningitidis (SD1C) was grown on defined medium supplemented with each of a variety of sulphur compounds as the sole source of sulphur. The organism grew on sulphate, sulphite, bisulphite, thiosulphate, dithionite, hydrosulphide, thiocyanate, L-cysteine, L-cystine, reduced glutathione, methionine, mercaptosuccinate, and lanthionine, but not on dithionate unless previously sulphur starved. Good growth was seen on concentrations of sulphate or thiosulphate as low as 10 microM. When pregrown on and subsequently starved for sulphate, the meningococcus showed enhanced transport capacity for this ion. Optimal conditions for assessing sulphur transport by active sulphur-limited cells were determined. The maximal sulphate uptake velocity was 9.3 nmol sulphate X mg protein-1 X min-1, and the apparent Km was 1.4 microM, far below human nasopharyngeal or serum sulphate levels.  相似文献   

11.
Bacterial infection of human vasculature can lead to unregulated systemic activation of coagulation and innate immunity and rapidly becomes life threatening. Neisseria meningitidis is a vascular pathogen that causes fatal sepsis and meningitis. Post-mortem histological analysis of tissues from individuals infected with N. meningitidis show large bacterial aggregates in close association with the vascular wall of small vessels. The ability of this bacterium to colonize blood vessel endothelium is likely to impact its capacity to both multiply in the blood stream and reach the brain. This process will be referred to as vascular colonization. Recent work has described a number of early steps in N. meningitidis vascular colonization, from attachment to proliferation and dissemination, focusing on the bacterial-host interaction.  相似文献   

12.
Mariners are a widespread and diverse family of animal transposons. Extremely similar mariners of the irritans subfamily are present in the genomes of three divergent insect host species, which strongly suggests that species-specific host factors are unnecessary for mobility. We tested this hypothesis by examining the activity of a purified transposase from one of these elements (Himar1) present in the horn fly, Haematobia irritans. Himar1 transposase was sufficient to reproduce transposition faithfully in an in vitro inter-plasmid transposition reaction. Further analyses showed that Himar1 transposase binds to the inverted terminal repeat sequences of its cognate transposon and mediates 5' and 3' cleavage of the element termini. Independence of species-specific host factors helps to explain why mariners have such a broad distribution and why they are capable of horizontal transfer between species.  相似文献   

13.
14.

Background

Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition.

Principal Findings

We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones.

Conclusions

We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.  相似文献   

15.
Bacteriocin production by strains of Neisseria meningitidis   总被引:13,自引:3,他引:10  
Kingsbury, David T. (Naval Medical Research Institute, Bethesda, Md.). Bacteriocin production by strains of Neisseria meningitidis. J. Bacteriol. 91:1696-1699. 1966.-Strains of Neisseria meningitidis produce substances inhibitory to other strains of meningococcus. These substances are nontransmissible and show a high degree of strain specificity. The properties of one of these substances resemble those of the class of bacterial inhibitors called bacteriocins. Synthesis of this "meningocin" can be increased as much as 200-fold by induction with mitomycin C. It shows a high degree of heat stability and is sensitive to proteolytic enzymes. Six bacteriocins from strains of N. meningitidis have been used to type meningococci. By use of this procedure, strains that were identical serologically were placed into distinct bacteriocin groups.  相似文献   

16.
In vitro folded and the denatured form of PorA P1.6 from Neisseria meningitidis strain M990 were used for immunization studies in mice. Previously, the antigen was isolated from cytoplasmic inclusion bodies, folded and purified. Its immunogenicity without adjuvant appeared to be low. The addition of the adjuvant QuilA, but not of galE lipooligosaccharide, considerably enhanced the immunogenicity. Moreover, when immunized with folded PorA P1.6 plus QuilA, a clear switch towards the IgG2a subclass of antibodies and concomitantly, the appearance of serum bactericidal activity, which is believed to be important for protective immunity, was observed. Hence, a tool for preparing vaccines against serogroup B meningococci devoid of endotoxin is available.  相似文献   

17.
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET‐mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET‐bound cathepsin G; (ii) expression of the high‐affinity zinc uptake receptor ZnuD allowed Nm to escape NET‐mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).  相似文献   

18.
Human IgA1 initiates complement-mediated killing of Neisseria meningitidis   总被引:5,自引:0,他引:5  
We studied the effect of human IgA1, the predominant IgA subclass in serum, on C-mediated killing of Neisseria meningitidis. We purified monomeric IgA1 from normal human serum and tetravalent meningococcal polysaccharide vaccinate serum by using the following successive chromatographic steps: jacalin lectin affinity, Superose 12 FPLC gel filtration, Mono Q FPLC anion exchange, and anti-IgG affinity. SDS-PAGE, ELISA, and Western immunoblot analyses of the IgA1 detected no trace of contaminating IgG or IgM. IgA1 initiated partial or complete lysis (62 to 100%) of nine group C strains by using either normal, hypogammaglobulinemic, factor B-depleted, or properdin-deficient human serum as a C source, but IgA1 was unable to effect killing in serum chelated with 10 mM MgCl2 and 10 mM EGTA. Lytic activity was dependent on the group C strain and the source of the IgA1; neither IgA1 preparation was bactericidal for all nine strains. Removal of the Fc portion of IgA1 with pepsin completely abolished bactericidal activity. We purified and radiolabeled C component C3, and found that IgA1 did not increase C3 deposition. With the use of a group C polysaccharide ELISA, we found that the vaccinate IgA1 had a high titer of group C polysaccharide antibody, whereas the IgA1 purified from normal human serum had no detectable group C polysaccharide specificity. Absorption of the vaccinate IgA1 with alum-bound group C polysaccharide did not affect the killing of a sensitive strain, but it did potentiate the killing of a previously resistant strain. Western immunoblots of whole cell lysates, outer membrane complex, and purified lipooligosaccharide showed that the bactericidal IgA1 was specific for several outer membrane proteins. Four of the proteins recognized by both IgA1 preparations had apparent Mr of 29, 42, 66, and 74 kDa. We conclude that IgA1, when bound to specific outer membrane proteins, can initiate lysis of group C meningococci via the classical C pathway, and that initiation of lysis is an Fc-dependent event which occurs without an increase in C3 deposition.  相似文献   

19.
To study the adhesion of meningococci under the conditions of a monoinfection and mixed infection (in association with influenza virus), the experimental model of mixed influenzal and meningococcal infection has been created in the culture of epithelial cells HEp-2. On this model in increase in the intensity of the adhesion of meningococci to eukaryotic cells, as well as in the intensity of the meningococcal colonization of such cells, after their preliminary infection with influenza virus has been observed. The study has revealed that in mixed infection the adsorption of extracellular virions onto the surface of bacteria occurs. During this adsorption viral processes directly interact with the microcapsule of the meningococcus.  相似文献   

20.
Proper periplasmic disulfide bond formation is important for folding and stability of many secreted and membrane proteins, and is catalysed by three DsbA oxidoreductases in Neisseria meningitidis. DsbD provides reducing power to DsbC that shuffles incorrect disulfide bond in misfolded proteins as well as to the periplasmic enzymes that reduce apo-cytochrome c (CcsX) or repair oxidative protein damages (MrsAB). The expression of dsbD, but not other dsb genes, is positively regulated by the MisR/S two-component system. Quantitative real-time PCR analyses showed significantly reduced dsbD expression in all misR/S mutants, which was rescued by genetic complementation. The direct and specific interaction of MisR with the upstream region of the dsbD promoter was demonstrated by electrophoretic mobility shift assay, and the MisR binding sequences were mapped. Further, the expression of dsbD was found to be induced by dithiothrietol (DTT), through the MisR/S regulatory system. Surprisingly, we revealed that inactivation of dsbD can only be achieved in a strain carrying an ectopically located dsbD, in the dsbA1A2 double mutant or in the dsbA1A2A3 triple mutant, thus DsbD is indispensable for DsbA-catalysed oxidative protein folding in N. meningitidis. The defects of the meningococcal dsbA1A2 mutant in transformation and resistance to oxidative stress were more severe in the absence of dsbD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号