首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand break (DSB) processing was studied in mouse testicular extracts using a defined DSB created by cleaving supercoiled pUC12 DNA at a unique site as the substrate, and analysing the processed DNA by gel electrophoresis. Our results demonstrated that enzymatic activity in the extracts promoted multimerization of DNA and suppressed its circularization. This was distinctly different from T4 DNA ligase activity in the control and therefore the process must be more complex than simple ligation. Efficiency of this end-to-end joining was ATP and Mg(2+)-dependent and was much higher with cohesive (especially with 5') than with blunt ends. On recleaving, the joining was predominantly faithful, especially for cohesive ends; but a detectable fraction of DNA had undergone end-processed joining causing junctional deletions, mostly with blunt ends. Redigestion of end-joined products from time course experiments established that the end-deleted joining occurred concurrent to the faithful joining. Junctional segments were cloned and their restriction analysis confirmed the presence of large deletions from both the sides. These results suggested the association of an end-processing activity (exonuclease/helicase + flap endonuclease) along with the end-joining ligase(s). Suppression of end-edited joining on lowering the reaction temperature to 17 degrees or 14 degrees C, despite efficient faithful joining, indicated that this enzymatic activity is retarded at low temperature. Though the efficiency and fidelity of joining were termini-dependent, the orientation of joining was random. Lack of preference for homologous ends (H:H or T:T), as well as efficient joining of heterologous DNA (pUC12/pBR322) having two different blunt termini, showed that the end joining could occur independent of extensive/terminal homology. Retention of radioactivity on end joining of (alpha-32P)dCTP end-filled cohesive termini, and lack of their junctional cleavability, apparently due to restriction site duplication, suggested direct double strand ligation. Thus it is demonstrated that mouse male germ cells possess an efficient DNA end-joining activity, involving either a major pathway of precise joining, or a minor end-deleted joining, and it seems to be achieved by a multienzymatic complex as suggested also for somatic cells by others. These results show that mammalian male germ cells that are proficient in homologous recombination utilize nonhomologous end-joining (NHEJ) mechanism for DSB processing and therefore NHEJ is a conserved, universal pathway for the vital function of DSB repair.  相似文献   

2.
3.
scid cells efficiently integrate hairpin and linear DNA substrates.   总被引:3,自引:2,他引:1       下载免费PDF全文
The scid mouse mutation affects V(D)J rearrangement and double-strand break repair. scid V(D)J rearrangement is characterized by defective coding joint formation which prevents the development of mature B and T cells. Hairpin DNA has been implicated in the formation of V(D)J coding joints. We found scid cells to be proficient in hairpin processing in the context of DNA integration. In addition, we found that the scid defect did not impair integration of linear DNA via nonhomologous recombination. Therefore, hairpin processing and integration of DNA into the genome are distinct from hypersensitivity to ionizing radiation and the defect in V(D)J recombination.  相似文献   

4.
A series of different frameshift mutations of a firefly luciferase reporter plasmid was created so that no activity was obtained when they were transfected into mammalian cells. Co-transfection of these constructs with short fragments of the original sequence resulted in luciferase activity in different cell lines (A-549, NIH 3T3 and Jurkat). The level of this activity was dependent on the length of the fragment, regardless of cell line examined. Two different transfection techniques (lipofection and adenovirus-enhanced gene transfer) gave similar results. It was shown by polymerase chain reaction that expression of detectable luciferase required recombination of the transfected molecules. Cells with defined defects in DNA repair pathways were examined for their ability to perform this extrachromosomal recombination. Cells lacking normal Ku p80, (ADP-ribosyl)transferase, MLH1 or XP-C were all capable of restoring expression to the frameshifted constructs. Given the pivotal roles of the above molecules in the pathways of DNA repair, it seems that this recombination derives from a different activity.  相似文献   

5.
Summary We have observed that failure to remove certain restriction enzymes after digestion reduced the transforming ability of DNA from 10- to 50-fold. The DNA found integrated in the transformed cells isolated under these conditions had lost little or no sequences. We interpret these results as indicating that certain restriction enzymes remain bound to the DNA ends after digestion, thus generating a substrate unfavorable both for integration and exonucleolytic degradation. As expected from this interpretation, removal of the restriction enzymes before transfection restored the full transforming ability of linear DNA, but also resulted in the integrated sequences being significantly shorter than the transfected DNA. These findings strongly argue for the hypothesis that integration of linear DNA by illegitimate recombination requires free ends and further suggest that exonucleolytic degradation of such ends may generate a preferred substrate for integration. Finally, a comparison of the sequences found integrated after transfection with circular or linear molecules, led us to conclude that circular molecules need not be linearized to become integrated.  相似文献   

6.
We have previously reported that plasmid DNA entrapped in the pH-sensitive immunoliposomes effectively transforms the target cells (Proc. Natl. Acad. Sci. USA, in press). In the present study, we demonstrate that DNA adsorbed on the same liposome also transforms the target cells. The transformation activity is antibody dependent, as liposomes containing no targeting antibody had reduced activity. The activity could be significantly inhibited by excess non-specific DNA (salmon sperm). Since some DNA are likely adsorbed to the liposomes during the entrapment process, the activity of the entrapped DNA is partially accounted for by the adsorbed DNA. The possibility of developing a simple DNA-mediated transfection protocol using liposome adsorbed DNA is discussed.  相似文献   

7.
In higher organisms, a major pathway for repairing double stranded breaks in DNA is non-homologous end-joining. Now a similar pathway has been shown to operate in bacterial cells, indicating that this important repair mechanism has been conserved through evolution.  相似文献   

8.
Basal leaf segments of 3 to 4 week old maize (Zea mays L.) seedlings plated on SH medium with 30 M dicamba produced embryogenic callus and/or somatic embryos. Histological evidence showed that some of the embryos arose directly from the explant. When leaf segments with embryos were transferred to MS medium with 1.0 M NAA, 1.0 M IAA, 2.0 M 2iP, and 60 g/l sucrose, the embryos germinated and the resulting seedlings could be established in culture tubes. These responses were obtained from three inbred lines, CHI31, S615, and S7.Abbreviations SH Schenk and Hildebrandt (1972) medium - MS Murashige and Skoog (1962) medium - dicamba 3,6-dichloro-o-anisic acid - IAA indole-3-acetic acid - NAA -naphthaleneacetic acid - 2iP 2-isopentyladenine  相似文献   

9.
Summary Phage MudII301 was used to isolate new periplasmic-leaky mutants of Escherichia coli K12 carrying an lkyB-lacZ gene fusion. The properties of strain JC2299 carrying the lkyB-2299 insertion mutation were identical to those of strain JC207 carrying the previously described lkyB-207 mutation. The LkyB-beta-galactosidase hybrid protein was partially extracellular and membrane bound. It was shown that both a nonsense (envZ-22) and a polar (ompR::Tn10) mutation in the ompB operon led to an increase of beta-galactosidase activity in the lkyB-lacZ fusion strain. On the other hand, mutations in the phoB, phoR, phoS, phoT, malT or envY genes had no effect on lkyB gene expression.  相似文献   

10.
Adar S  Livneh Z 《DNA Repair》2006,5(4):479-490
DNA lesions that have escaped DNA repair are tolerated via translesion DNA synthesis (TLS), carried out by specialized error-prone DNA polymerases. To evaluate the robustness of the TLS system in human cells, we examined its ability to cope with foreign non-DNA stretches of 3 or 12 methylene residues, using a gap-lesion plasmid assay system. We found that both the trimethylene and dodecamethylene inserts were bypassed with significant efficiencies in human cells, using both misinsertion and misalignment mechanisms. TLS across these non-DNA segments was aphidicolin-sensitive, and did not require poleta. In vitro primer extension assays showed that purified poleta, polkappa and poliota were each capable of inserting each of the four nucleotides opposite the trimethylene chain, but only poleta and polkappa could fully bypass it. Poleta and poliota, but not polkappa, could also insert each of the four nucleotides opposite the dodecamethylene chain, but all three polymerases were severely blocked by this lesion. The ability of TLS polymerases to insert nucleotides opposite a hydrocarbon chain, despite the lack of any similarity to DNA, suggests that they may act via a mode of transient and local template-independent polymerase activity, and highlights the robustness of the TLS system in human cells.  相似文献   

11.
A novel pathway of DNA end-to-end joining   总被引:42,自引:0,他引:42  
S Thode  A Sch?fer  P Pfeiffer  W Vielmetter 《Cell》1990,60(6):921-928
Repair mechanisms related to illegitimate recombination can join nonhomologous DNA ends that terminate as protruding single strands (PSS). Here we analyze in Xenopus egg extracts joining reactions between 3' PSS termini and various partner termini. In junctions, 3' PSS termini are preserved by fill-in DNA synthesis, although their 5' recessed ends cannot serve as a primer. Alternative priming from a partner terminus ligated to the 3' PSS end appears unlikely, because no single strand-specific DNA ligases are detectable. We show that fill-in of 3' PSS termini precedes ligation and can even be primed in the absence of any ligation. Therefore, priming requires precise alignment of terminus pairs by a novel mechanism. We postulate that this is achieved by unique DNA binding proteins that align ends in various types of joining reactions.  相似文献   

12.
13.
14.
The separation of DNA segments attached to proteins.   总被引:5,自引:0,他引:5  
A simple assay for DNA segments bearing tightly bound proteins is described. This assay depends on the observation that proteins, of any type tested, bind quantitatively to glass fiber filters. When a protein is firmly attached to DNA, this DNA segment is retained while DNA not associated with protein will pass through the filter. Depending on the preparation of DNA, backgrounds as low as 3 × 10?4 of the input DNA have been obtained. Using this technique it should be possible to specifically recover 1 restriction segment in 3000 that happens to be firmly bound to a protein. The protein or DNA-protein complex can be released by very dilute sodium dodecyl sulfate and after its removal by dialysis, nearly complete rebinding can be achieved. The procedure should find some use in removing traces of protein from DNA solutions as well as for the determination of proteins themselves. Single chain DNA and RNA are not retained but backgrounds are higher, ca. 2 × 10?2. The procedure should have some application to single chain DNA and RNA-protein complexes.  相似文献   

15.
Cells of higher eucaryotes are known to possess mechanisms of illegitimate recombination which promote the joining between nonhomologous ends of broken DNA and thus may serve as basic tools of double-strand-break (DSB) repair. Here we show that cells of the fission yeast Schizosaccharomyces pombe also contain activities of nonhomologous DNA end joining resembling the ones found in higher eucaryotes. Nonhomologous end joining activities were detected by transformation of linearized self-replicating plasmids in yeast cells employing a selection procedure which only propagates transformants carrying recircularized plasmid molecules. Linear plasmid substrates were generated by duplicate restriction cuts carrying either blunt ends or 3' or 5' protruding single strands (PSS) of 4 nt which were efficiently joined in any tested combination. Sequence analysis of joined products revealed that junctional sequences were shortened by 1 to 14 nt. Two mechanisms may account for junction formation (i) loss of terminal nucleotides from PSS tails to produce blunt ends which can be joined to abutting ends and (ii) interactions of DNA termini at patches of sequence homologies (1-4 bp) by formation of overlap intermediates which are subsequently processed. A general feature of the yeast joining system is that end joining can only be detected in the absence of sequence homology between the linear substrate and host genome. In the presence of homology, nonhomologous DNA end joining is efficiently competed by activities of homologous recombination.  相似文献   

16.
Direct somatic embryogenesis from in vitro-cultured leaf segments of multiple disease-resistant pepper, Piper colubrinum Link is reported. Somatic embryos were initiated on Murashige and Skoog's (1962) basal medium containing 2.2 μM benzyladenine+0.46 μM kinetin and multiplied profusely through secondary embryogenesis on the same medium. Some 91% somatic embryos converted into plantlets on MS medium supplemented with 4.4 μM benzyladenine+0.23 μM kinetin and plantlets developed on half-strength MS+2.4 μM indole-3-butyric acid. Plantlets were hardened, transferred to soil, and 100% of plants survived. Various developmental stages of somatic embryogenesis were studied using histological methods. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Homopolymers or peptides containing a high percentage of cationic amino acids have been shown to have a unique ability to cross the plasma membrane of cells, and consequently have been used to facilitate the uptake of a variety of biopolymers and small molecules. To investigate whether the polycationic character of these molecules, or some other structural feature, was the molecular basis for the effect, the ability of a variety of homopolymers to enter cells was assayed by confocal microscopy and flow cytometry. Polymers of L- or D-arginine containing six or more amino acids entered cells far more effectively than polymers of equal length composed of lysine, ornithine and histidine. Peptides of fewer than six amino acids were ineffective. The length of the arginine side-chain could be varied without significant loss of activity. These data combined with the inability of polymers of citrulline to enter cells demonstrated that the guanidine headgroup of arginine was the critical structural component responsible for the biological activity. Cellular uptake could be inhibited by preincubation of the cells with sodium azide, but not by low temperature (3 degrees C), indicating that the process was energy dependent, but did not involve endocytosis.  相似文献   

18.
In addition to joining broken DNA strands, several non-homologous end-joining (NHEJ) proteins have a second seemingly antithetical role in constructing functional telomeres, the nucleoprotein structures at the termini of linear eukaryotic chromosomes that prevent joining between natural chromosome ends. Although NHEJ deficiency impairs double-strand break (DSB) repair, it also promotes inappropriate chromosomal end fusions that are observed microscopically as dicentric chromosomes with telomeric DNA sequence at points of joining. Here, we test the proposition that unprotected telomeres can fuse not only to other dysfunctional telomeres, but also to ends created by DSBs. Severe combined immunodeficiency (scid) is caused by a mutation in the catalytic subunit of DNA-dependent protein kinase (DNA-PK), an enzyme required for both efficient DSB repair and telomeric end-capping. Cells derived from wild-type, Trp53-/-, scid, and Trp53-/-/scid mice were exposed to gamma radiation to induce DSBs, and chromosomal aberrations were analyzed using a novel cytogenetic technique that can detect joining of a telomere to a DSB end. Telomere-DSB fusions were observed in both cell lines having the scid mutation, but not in wild-type nor Trp53-/- cells. Over a range of 25-340 cGy, half of the visible exchange-type chromosomal aberrations in Trp53-/-/scid cells involved telomere-DSB fusions. Our results demonstrate that unprotected telomeres are not only sensed as, but also acted upon, by the DNA repair machinery as if they were DSB ends. By opening a new pathway for misrepair, telomere-DSB fusion decreases the overall fidelity of DSB repair. The high frequency of these events in scid cells indicates telomere dysfunction makes a strong, and previously unsuspected, contribution to the characteristic radiation sensitivity associated with DNA-PK deficiency.  相似文献   

19.
利用甲基化敏感扩增多态性(MSAP)方法,对欧石楠大田苗、胚性愈伤组织和再生苗的DNA甲基化进行了研究。从64对选扩增引物中筛选出19对,共扩增得到506条带,统计显示,大田苗、胚性愈伤组织和再生苗的全基因组DNA甲基化水平分别为31.42%、27.86%和29.05%,3种试材发生甲基化变异的有175条带,变异率为34.58%。体细胞胚诱导形成胚性愈伤组织过程中,甲基化水平降低,而在再生苗中有所恢复,与大田苗接近。在外侧胞嘧啶甲基化水平上,胚性愈伤组织的甲基化水平有所增加,且在再生苗中可部分维持。另外,在175条变异带中,再生苗恢复到大田苗DNA甲基化模式的有62条,占总变异条带的35.43%,而与胚性愈伤组织维持相同DNA甲基化模式的有59条,占33.71%。回收部分甲基化变异条带,最终得到8条有效的基因组DNA序列。BLASTnI:对分析表明,在欧石楠基因组中,包括抗性基因、蛋白激酶、质体基因等在内的多种DNA序列均存在DNA基化修饰现象。  相似文献   

20.
Immortalized cell lines have been used to study infection and replication of adeno-associated virus (AAV) in culture, but primary cells presumably provide a better model for AAV behavior in animals. Here, we have evaluated the ability of AAV vectors to transduce primary and immortalized strains of human epithelial cells and fibroblasts. Two AAV vectors were used, one that transduced an alkaline phosphatase gene (AAV-LAPSN), and one that transduced a beta-galactosidase/neomycin phosphotransferase fusion gene (AAV-L beta geo). The transduction efficiency of the AAV-LAPSN vector, quantitated by measurement of alkaline phosphatase-positive cell foci following infection, was 10 to 60 times greater in immortalized human cells than in primary cells, and total alkaline phosphatase activity in cell lysates was 40 to 50 times greater in immortalized cells. The AAV-L beta geo vector gave similar results. In contrast, the transduction efficiency of a retrovirus vector encoding alkaline phosphatase was equivalent in primary and immortalized cells. Analysis of the quantity and state of the AAV vector genomes in cells showed that primary and immortalized cells contained comparable numbers of vector copies per cell and that the vast majority of vector DNA was not integrated into the cell genome. Additionally, the level of AAV vector-derived message paralleled the transduction efficiency. These results indicate that the block to functional transduction in primary cells occurred after virus entry and limited the abundance of vector-derived message. Data from AAV transduction in cultures of human cells containing immortalizing genes suggest that cellular changes secondary to the introduction of immortalizing genes increased permissiveness for transduction by AAV vectors. In summary, our data demonstrate that AAV vectors transduce primary human cells much less efficiently than immortalized cells and indicate the importance of using primary cells to evaluate AAV vectors for gene therapy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号