首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanin-concentrating hormone (MCH) is a cyclic neuropeptide, predominantly expressed in hypothalamus, and recognized as a key regulator in feeding behaviour and energy balance. In this study, we examined the behavioural effects of intracerebroventricularly administered MCH on food intake, anxiety, exploratory behaviour and body core temperature in rats. MCH (0.15-10.0 microg, i.c.v.) acutely increased food intake in a dose-dependent manner. In addition, MCH (0.6-10.0 microg, i.c.v.) produced effects similar to anxiolytics in an animal model of anxiety, Vogel's punished drinking test. Thus, punished drinking episodes were significantly increased. We found no effects of MCH (5.0-20.0 microg, i.c.v.) on locomotor activity either in habituated or non-habituated animals. Furthermore, MCH did not produce any changes in body core temperature. Together, these observations further support a role for MCH as an orexigenic neuropeptide and also suggest anti-anxiety properties for MCH.  相似文献   

2.
Cholecystokinin octapeptide (CCK-8), administered intracerebroventricularly (i.c.v.), will suppress feeding. The aim of the present study was to determine the pharmacological characteristics of this satiety inducing effect in rats. For this purpose, we employed a feeding bioassay model in 24 h fasted rats and examined the effects of CCK-8 and a variety of structurally related analogs on latency to feed after i.c.v. injection and on the amount of food and water consumed as measured after the initiation of feeding in sequential 20-min epochs for 1 h. CCK-8, given in doses of 0.1, 1 and 10 nmol, produced a dose-dependent increase in feeding latency and a reduction of food intake during the first 20 min after initiation of feeding. Food intake during the next 40 min and water consumption were not altered. Plasma levels of CCK-like immunoreactivity after an i.c.v. injection of a dose of CCK-8 which blocked feeding (10 nmol) rose insignificantly from 117 to 125 pg/ml. In contrast, at the minimally effective dose of CCK-8 after i.v. administration (10 nmol), which also produced an inhibition of feeding, the plasma level was 1430 pg/ml. This difference indicates that plasma levels of CCK after i.c.v. CCK-8 are not adequate to produce the observed feeding suppression and suggests that the effects of i.c.v. CCK-8 are not mediated by a peripheral redistribution. Systematic dose response studies revealed the following rank order of potencies: CCK-8 greater than or equal to G-17 II much greater than CCK-8 NS = G-17 I greater than or equal to CCK-4 = CCK 26-29 = 0. Only gastrin-17 II (sulfated) produced an effect comparably significant to CCK-8. I.c.v. proglumide at 2500 nmol failed to modify the effects of CCK-8 at 10 nmol after i.c.v. injection. These data demonstrate that the structural requirements for feeding suppressive activity in rat brain are the carboxyterminus with a sulfated tyrosine residue, located 6 to 7 residues from the carboxyterminus, as present in CCK-8 and gastrin-17 II.  相似文献   

3.
To evaluate whether MTII, a melanocortin receptor 3/4 agonist, is working in hypophagic and hypothermogenic obese model, we measured food intake, body weight, oxygen consumption, and fat mass following intracerebroventricular (i.c.v.) infusion of MTII in monosodium glutamate (MSG)-induced obese rats. MTII, or artificial cerebrospinal fluid (aCSF), was infused into i.c.v. with an osmotic minipump for 1 week. MSG-obese rats were induced by neonatal injection of MSG. Five-month-old MSG rats were characterized by hypophagia, lower oxygen consumption, hyperleptinemia, and obesity compared to age-matched control rats. The infusion of MTII decreased their food intake, visceral fat, and body weight in MSG-obese rats compared with aCSF-infused rats. The oxygen consumption was increased by MTII treatment in MSG-obese rats compared with aCSF as well as pair fed (PF) rats. Interestingly, these leptin-like effects of MTII were greater in MSG-obese rats than in controls, which might be related to the increased expression of melanocortin receptor 4 (MC4R) in the hypothalamus of MSG-obese rats. Our results suggested that both anorexic and thermogenic mechanisms were activated by MTII in the MSG-obese rats and contributed to the decrease in body weight and fat mass. Moreover, there was a sensitization to MTII caused by upregulation of the melanocortin receptor in the MSG-obese rats.  相似文献   

4.
The effect of CCK-8 (50 ng, i.c.v.) on the neurohypophysial vasopressin and oxytocin storage was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. In another experimental series rats dehydrated for three days were given CCK-8 in a daily i.c.v. dose of 50 ng. The neurohypophysial vasopressin and oxytocin content was bioassayed by pressor effect following Dekański or milk-ejection activity in vitro following van Dongen and Hays, respectively. The decrease of neurohypophysial vasopressin and oxytocin content, brought about by dehydration, was significantly less marked in animals treated with CCK-8. The depletion of neurohypophysial vasopressin and oxytocin content in haemorrhaged animals could be completely inhibited by earlier i.c.v. administration of CCK-8. It is suggested that hypothalamic cholecystokinin may serve as a modulator of neurohypophysial function.  相似文献   

5.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

6.
The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3-5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T(3) levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21-23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.  相似文献   

7.
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12:12 light:dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short-term (a single injection) nor by long-term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.  相似文献   

8.
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12∶12 light∶dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short‐term (a single injection) nor by long‐term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.  相似文献   

9.
In mammals, amylin (AMY) is a peptide that is secreted from the pancreas in response to a meal. AMY inhibits food intake and may also contribute to the anorectic effects of the brain-gut peptide cholecystokinin (CCK). In this study, we assessed the role of AMY in the regulation of food intake in goldfish (Carassius auratus) and its interactions with CCK. Fish were injected intraperitoneally (i.p.) with mammalian AMY and intracerebroventricularly (i.c.v.) with mammalian AMY, alone or in combination with the sulfated octapeptide CCK-8S. We also assessed the effects of i.c.v. injections of AC187, an amylin receptor antagonist on the central actions of both AMY and CCK-8S, as well as the effects of i.c.v. injections of proglumide, a CCK receptor antagonist, on the central effects of AMY. AMY injected i.p. at 100 ng/g but not 25 or 50 ng/g or i.c.v. at 10 ng/g but not 1 ng/g significantly decreased food intake as compared to saline-treated fish. Fish co-treated i.c.v. with AMY at 1 ng/g and CCK-8S at 1 ng/g had a food intake lower than that of control fish and fish treated with either 1 ng/g CCK-8S or 1 ng/g AMY, suggesting a synergy between the two systems. Whereas low i.c.v. doses of AC187 (30 ng/g) had no effect, moderate doses (50 ng/g) induced an increase in food intake, indicating a role of endogenous AMY in satiety in goldfish. Blocking central amylin receptors with i.c.v. AC187 (30 ng/g) resulted in an inhibition of both i.c.v. AMY- and CCK-induced reduction in feeding. Blocking central CCK receptors with i.c.v. proglumide (25 ng/g) resulted in an inhibition of both i.c.v. CCK-induced and AMY-induced decrease in food intake. Our results show for the first time in fish that AMY is a potent anorexigenic factor and that its actions are interdependent with those of CCK.  相似文献   

10.
The implantation of a biotelemetry transmitter for core body temperature (T(c)) and motor activity (MA) measurements is hypothesized to have effects on growth and circadian rhythmicity depending on animal body-to-transmitter (B:T) size ratio. This study examined the impact of transmitter implantation (TM) on body weight, food intake (FI), water intake (WI), and circadian T(c) and MA rhythms in mice (23.8 +/- 0.04 g) and rats (311.5 +/- 5.1 g) receiving no treatment (NT), anesthesia, laparotomy (LAP), and TM. The B:T size ratio was 6:1 and 84:1 for mice and rats, respectively. In mice, body weight required 14 days to recover to presurgical levels and never attained the level of the other groups. FI recovered in 3 days, whereas WI never reached presurgical levels. Rat body weight did not decrease below presurgical levels. FI and WI recovered to presurgical levels in rats by day 2 postsurgery. Anesthesia decreased mouse body weight for 1 wk, but was without effect in rats. LAP significantly decreased body weight for 5 days in mice and 1 day in rats, showing a significant effect of the surgical procedure in the absence of TM in both species. Circadian T(c) and MA rhythms were evident within the first week in both species, indicating dissociation between circadian rhythmicity and recovery of growth variables. Cosinor analysis showed a TM effect on T(c) min, T(c) max, mesor, amplitude, and period of mice, whereas only the amplitude of the rhythm was affected in rats. These data indicate that a large B:T size ratio is associated with minimization of the adverse effects of surgical implantation. We recommend that B:T size ratio, recovery of presurgical body weight, and display of a robust circadian T(c) and MA rhythm be established before collection of biotelemetry data collection under an experimental paradigm.  相似文献   

11.
The hypothalamic neuropeptides modulate physiological activity via G protein-coupled receptors (GPCRs). Galanin-like peptide (GALP) is a 60 amino acid neuropeptide that was originally isolated from porcine hypothalamus using a binding assay for galanin receptors, which belong to the GPCR family. GALP is mainly produced in neurons in the hypothalamic arcuate nucleus. GALP-containing neurons form neuronal networks with several other types of peptide-containing neurons and then regulate feeding behavior and energy metabolism. In rats, the central injection of GALP produces a dichotomous action that involves transient hyperphasia followed by hypophasia and a reduction in body weight, whereas, in mice, it has only one action that reduces both food intake and body weight. In the present minireview, we discuss current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also examine the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery. We conclude that GALP may be of therapeutic value for obesity and life-style-related diseases in the near future.  相似文献   

12.
Bolus-administered intracerebroventricular (ICV) relaxin-3 has been reported to increase feeding. In this study, to examine the role of relaxin-3 signaling in energy homeostasis, we studied the effects of chronically administered ICV relaxin-3 on body weight gain and locomotor activity in rats. Two groups of animals received vehicle or relaxin-3 at 600 pmol/head/day, delivered with Alzet osmotic minipumps. In animals receiving relaxin-3, food consumption and weight gain were statistically significantly higher than those in the vehicle group during the 14-day infusion. During the light phase on days 2 and 7 and the dark phase on days 3 and 8, there was no difference in locomotor activity between the two groups. Plasma concentrations of leptin and insulin in rats chronically injected with relaxin-3 were significantly higher than in the vehicle-injected controls. These results indicate that relaxin-3 up-regulates food intake, leading to an increase of body weight and that relaxin-3 antagonists might be candidate antiobesity agents.  相似文献   

13.
The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene (ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (T(C)), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b(-/-) mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in T(C). Interestingly, POMC-Ptp1b(-/-) mice had increased BAT weight and elevated plasma triiodothyronine (T(3)) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.  相似文献   

14.
Cholecystokinin octapeptide (CCK-8, 5 micrograms/kg) was injected i.p. into male Sprague-Dawley rats bearing the Walker 256-carcinosarcoma, or into non-tumour bearing controls, on a 20-h food deprivation schedule. Food and water intake and body weight maintenance were monitored for 15 days after tumour implantation and compared to that of tumour-bearing animals not injected with CCK-8. Food intake was significantly reduced for the duration of the two 4-day periods of CCK-8 injection, indicating that behavioural tolerance to this peptide did not occur. The severity of anorexia and body weight loss in tumour-bearing animals was significantly greater than that observed in non-tumour bearing controls, for the first 13 days of observation. These results indicate that endogenous peptides, such as CCK, may function in tumour-bearing animals to enhance the anorexia and wasting which typifies the anorexia cachexia syndrome.  相似文献   

15.
Galanin-like peptide (GALP) has been implicated in the neuroendocrine regulation of both feeding and reproduction. In male rodents and primates, intracerebroventricular (icv) infusions of GALP stimulate luteinizing hormone (LH) release, induce Fos expression in brain areas implicated in feeding and reproduction, and affect food intake and body weight in rodents. In gonad-intact and castrated male rats, icv administration of GALP also stimulates male sexual behavior. While the effects of GALP on male physiology and behavior are well documented, no studies have addressed such a role of GALP in females. We tested the effects of icv GALP infusions on LH release, locomotor activity, motor control, and body weight regulation in adult ovariectomized female mice hormonally primed with estradiol benzoate and progesterone. In addition, sexually-experienced male and female mice were treated with GALP and tested for sexual behavior. In females, GALP reduced open-field locomotor activity, the ability to maintain grip on an accelerating rotarod, and 24-h body weight in a dose-dependent manner. GALP also increased LH secretion in female mice, an effect that was blocked by pre-treatment with Antide, a gonadotropin-releasing hormone (GnRH) type-1 receptor antagonist. GALP infusions slightly decreased the occurrence of lordosis behavior in female mice and significantly increased the latencies with which females displayed receptivity. Unlike previous reports in male rats, GALP inhibited male sexual behavior in mice. Our data indicate that in female mice, GALP stimulates LH release via GnRH, and decreases body weight, motor control, and locomotor activity via GnRH-independent pathways. Furthermore, our sexual behavior and locomotor findings suggest species-specific differences in the mechanism and/or location of GALP action in the brains of rats and mice.  相似文献   

16.
H Yu  D Wen  C Ma  Y Meng  S Li  Z Ni  B Cong 《PloS one》2012,7(7):e41860
Cholecystokinin octapeptide (CCK-8), a gut-brain peptide, regulates a variety of physiological behavioral processes. Previously, we reported that exogenous CCK-8 attenuated morphine-induced conditioned place preference, but the possible effects of CCK-8 on aversively motivated drug seeking remained unclear. To investigate the effects of endogenous and exogenous CCK on negative components of morphine withdrawal, we evaluated the effects of CCK receptor antagonists and CCK-8 on the naloxone-precipitated withdrawal-induced conditioned place aversion (CPA). The results showed that CCK2 receptor antagonist (LY-288,513, 10 μg, i.c.v.), but not CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.), inhibited the acquisition of CPA when given prior to naloxone (0.3 mg/kg) administration in morphine-dependent rats. Similarly, CCK-8 (0.1-1 μg, i.c.v.) significantly attenuated naloxone-precipitated withdrawal-induced CPA, and this inhibitory function was blocked by co-injection with L-364,718. Microinjection of L-364,718, LY-288,513 or CCK-8 to saline pretreated rats produced neither a conditioned preference nor aversion, and the induction of CPA by CCK-8 itself after morphine pretreatments was not significant. Our study identifies a different role of CCK1 and CCK2 receptors in negative affective components of morphine abstinence and an inhibitory effect of exogenous CCK-8 on naloxone-precipitated withdrawal-induced CPA via CCK1 receptor.  相似文献   

17.
Regulation of food intake by acyl and des-acyl ghrelins in the goldfish   总被引:2,自引:0,他引:2  
Our recent research has indicated that intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration of n-octanoic acid-modified ghrelin (acyl ghrelin) stimulates food intake and locomotor activity in the goldfish. The manner in which peripherally administered acyl ghrelin regulates food intake, however, remains unclear. In contrast to acyl ghrelin, non-acylated ghrelin (des-acyl ghrelin) does not exert an orexigenic action or induce hypermotility. To this extent, the biological role of des-acyl ghrelin in fish is unknown. Given the possible involvement of afferent pathways in mediating the effects of acyl ghrelin, as is known to occur in rodents, we examined the effect of capsaicin, a neurotoxin which destroys primary sensory (vagal and splanchnic) afferents, on the orexigenic activity induced by i.p.-injected acyl ghrelin. Pretreatment with i.p.-injected capsaicin (0.16 micromol/g body weight (BW)) cancelled the orexigenic action of i.p.-injected acyl ghrelin (8 pmol/g BW), although i.p.-injected capsaicin alone did not affect food intake. The effect of des-acyl ghrelin on the orexigenic action of acyl ghrelin in the goldfish was also investigated. The i.c.v. and i.p. injection of des-acyl ghrelin at doses 3-10 times higher than that of acyl ghrelin suppressed the orexigenic action of i.c.v.- and i.p.-injected acyl ghrelin (doses of 1 and 8 pmol/g BW). In contrast, injection of des-acyl ghrelin alone did not show any inhibitory effect on food intake. These results suggest that, as is seen in rodents, circulating acyl ghrelin derived from peripheral tissues acts via primary sensory afferent pathways on feeding centers in the brain. The results also show that des-acyl ghrelin inhibits acyl ghrelin-induced orexigenic activity in goldfish.  相似文献   

18.
Sulfated cholecystokinin octapeptide (CCK-8) was administered either intraperitoneally or into the cerebral ventricle of fully conscious mice, and locomotor activity was quantified. CCK-8 administered by either route suppressed locomotor activity. Subcutaneously administered selective CCK-A receptor antagonist, L-364,718 (1 mg/kg), reversed the inhibitory effect of centrally as well as peripherally administered CCK-8, but the selective CCK-B receptor antagonist, L-365,260 (1 mg/kg), did not. These results demonstrate that centrally as well as peripherally administered CCK-8 suppresses locomotor activity in mice through an interaction with CCK-A, but not CCK-B, receptors.  相似文献   

19.
One of the possible mechanisms by which the weight-reducing surgical procedure ileal interposition (II) works is by increasing circulating levels of lower gut peptides that reduce food intake, such as glucagon like peptide-1 and peptide YY. However, since this surgery involves both lower and upper gut segments, we tested the hypothesis that II alters the satiety responses evoked by the classic upper gut peptide cholecystokinin (CCK). To test this hypothesis, we determined meal size (MS), intermeal interval (IMI) and satiety ratio (SR) evoked by CCK-8 and -33 (0, 1, 3, 5 nmol/kg, i.p.) in two groups of rats, II and sham-operated. CCK-8 and -33 reduced MS more in the sham group than in the II group; CCK-33 prolonged IMI in the sham group and increased SR in both groups. Reduction of cumulative food intake by CCK-8 in II rats was blocked by devazepide, a CCK1 receptor antagonist. In addition, as previously reported, we found that II resulted in a slight reduction in body weight compared to sham-operated rats. Based on these observations, we conclude that ileal interposition attenuates the satiety responses of CCK. Therefore, it is unlikely that this peptide plays a significant role in reduction of body weight by this surgery.  相似文献   

20.
Administration of morphine may impair learning and memory processes. Cholecystokinin has been reported to be involved in various types of memory, and our previous study found that Cholecystokinin octapeptide attenuates spatial memory impairment in chronic morphine-treated mice. However, the effect of CCK-8 on acute morphine-induced memory impairment is not clear. In this study, effect of acute CCK-8 and morphine on spatial reference memory was evaluated using Morris water maze in KM mice. Acetylcholine (Ach) content was measured using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS). Pre-training with morphine (5, 10 mg/kg, i.p.) significantly impaired spatial reference memory acquisition without disturbing the performance in the visible platform task, while pre-test morphine has no effect on memory retrieval. Pre-training (0.01, 0.1 and 1 μg, i.c.v.) or pre-test (0.1 and 1 μg, i.c.v.) of CCK-8 facilitated spatial reference memory acquisition and retrieval, respectively. CCK-8 (0.1 and 1 μg) significantly attenuated memory loss by pre-training morphine. Furthermore, CCK-8 (1 μg, i.c.v) increased acetylcholine contents of hippocampus in saline or morphine-treated mice. Our study identifies CCK-8 reversed spatial reference memory loss induced by acute morphine, and the mnemonic effect could be related to the facilitation of CCK-8 on memory acquisition and retrieval through accelerating acetylcholine release in hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号