首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of daily torpor were measured in response to photoperiod and food restriction at a constant temperature (18 °C) in two species of elephant shrew (Macroscelidea), Elephantulus rozeti (from Morocco) and Elephantulus myurus (from southern Africa). Body temperature was monitored continuously for ca. 3 months using temperature-sensitive telemeters. Under short photoperiods (8:16 L:D), both species entered spontaneous torpor on an ad libitum diet, but showed a higher frequency of induced torpor when food was restricted. Under long photoperiods (16:8 L:D), E. myurus could be induced to enter daily `summer' torpor. A total of 378 torpor bouts were measured, none of which were longer in duration than 18 h. Under short photoperiods, arousal from torpor was associated with the onset of the photoperiod, whereas the time of entry was variable throughout the scotophase. However, E. myurus tended to phase shift torpor from the photophase to the scotophase under long photoperiods, despite displaying weak circadian amplitudes of body temperature indicative of a photophase rest phase. Both species lacked well-defined circadian amplitudes of body temperature, a pattern thought to be associated with polyphasic activity cycles characteristic of several Elephantulus species. It was concluded that these and other patterns of torpor shown by Elephantulus show similarities with other small Afrotropical insectivores inhabiting semi-arid habitats or unpredictable environments. Accepted: 26 July 2000  相似文献   

2.
The characteristics of daily torpor were measured in the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea) in response to ambient temperature and food deprivation. Elephant shrews are an ancient mammal order within a superordinal African clade including hyraxes, elephants, dugongs and the aardvark. M. proboscideus only employed torpor when deprived of food; torpor did not occur under an ad libitum diet at ambient temperatures of 10, 15 and 25?°C. Torpor bout duration ranged from <1?h to ca. 18?h. The times of entry into torpor were restricted to the scotophase, despite normothermic body temperature patterns indicating a rest phase coincident with the photophase. Full arousal was always achieved within the first 3?h of the photophase. When food deprived, the onset of the rest phase, and hence torpor, advanced with respect to the experimental photoperiod. The lowest torpor body temperature measured was 9.41?°C. Daily torpor in M. proboscideus confirms a pleisiomorphic origin of daily heterothermy. Torpor facilitates risk-averse foraging behaviour in these small omnivores by overcoming long-term energy shortfalls generated by the inherent variability of food availability in their semi-arid, El Niño-afflicted habitats.  相似文献   

3.
We examined the energetics of the living fossil microbiotheriid Dromiciops gliroides, a nocturnal and rare small marsupial, endemic to the northern portion of the temperate forest of southern South America. We investigated the effects of changes at ambient temperature and food restriction on the energetics and patterns of torpor. We determined whether they exhibit shallow daily torpor or deep prolonged torpor like some Australian marsupials. Thermal conductance was 92.5% of the expected value for a similarly sized eutherian and basal metabolic rate was 82.9 and 58.6% of the predicted value for standard metatherians and eutherians, respectively. Euthermic D. gliroides showed daily fluctuations in body temperature, being significantly higher during the night. Dromiciops gliroides entered torpor and aroused spontaneously. The duration of torpor bouts increased in response to decreasing ambient temperature; torpor bout duration ranged from 10 h at 20 °C to 120 h at 12.5 °C. This study is the first record of deep torpor or hibernation for a South American mammal. Torpor in this species as well as in marsupials in general appears to be an opportunistic response to unpredictable biotic and abiotic conditions.Abbreviations VO2 metabolic rate - Tb body temperature - Ta ambient temperature - BMR basal metabolic rate - C thermal conductance - Tm temperature differentialCommunicated by I.D. Hume  相似文献   

4.
Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; <5 °C). First Tflow movements appeared at the beginning of March and often occurred during long torpor bouts. In most cases, Tflow events represented slow displacements between clusters of bats. In several cases, however, departure or arrivals from and into clusters was also recorded without any elevation in body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject.  相似文献   

5.
6.
Understanding thermal biology in heterothermic endotherms requires that we accurately quantify temporal patterns of torpor use and activity. In many studies this is done using open-flow respirometry or implanted temperature sensitive transmitters. Here we report a method to quantify torpor and activity in cavity living endotherms that does not require surgery or confinement in metabolic chambers. We used temperature dataloggers affixed inside nests to record nest temperatures (Tnest) as a proxy for body temperature. We constructed nests so that animals were in direct contact with dataloggers while at rest. Passive infrared motion detectors were used to determine when animals were active in their cages outside nests. We confirmed that the approach accurately quantifies torpor patterns using open-flow respirometry. This method may prove useful in studies addressing temporal patterns of torpor use under semi-natural conditions because it results in little disruption to animals.  相似文献   

7.
8.
Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.  相似文献   

9.
Daily torpor is a physiological adaptation that allows mammals to cope with energetic challenges associated with unpredictable periods of food shortage. We experimentally tested whether food quality influences torpor frequency and depth in the pichi (Zaedyus pichiy), a small, opportunistically omnivorous armadillo endemic to arid and semi-arid habitats of southern South America. We recorded body temperature (Tsc) changes in 10 semi-captive, adult female pichis using dataloggers implanted subcutaneously during periods of 21 days. All individuals entered spontaneous daily torpor, but those receiving a low-quality diet had significantly lower daily mean and minimum Tsc, spent more time at Tsc below their individual lower limit of normothermia, and had a higher Heterothermy Index than controls. Five individuals entered prolonged torpor bouts lasting more than 24 h, two of them repeatedly. Nine out of ten prolonged torpor bouts occurred in individuals feeding on a low-quality diet, suggesting that pichis are able to enter prolonged periods of torpor during severe environmental stress. In combination with their ability to hibernate and to respond to a reduced insect abundance by ingesting other food items, this physiological adaptation allows pichis to better cope with food shortages and a more extreme climate than other armadillos. It may explain why Z. pichiy naturally occurs farther south than any other armadillo species.  相似文献   

10.
Woolly dormice, Dryomys laniger Felten and Storch (Senckenbergiana Biol 49(6):429–435, 1968), are a small (20–30 g), omnivorous (mainly insectivorous), nocturnal glirid species endemic to Turkey. Although woolly dormice have been assumed to hibernate during winter, no information exists on body temperature patterns and use of torpor in the species. In the present study, we aimed to determine body temperature patterns and use of torpor in woolly dormice under controlled laboratory conditions. Accordingly, body temperature (Tb) of woolly dormice was recorded using surgically implanted Thermochron iButtons, small and inexpensive temperature-sensitive data loggers. Woolly dormice exhibited robust, unimodal daily Tb rhythmicity during the euthermic stage before the beginning of hibernation. They displayed short torpor before they began hibernation, although the tendency to enter short torpor was different among individuals. Woolly dormice began hibernation within 1–3 days after exposure to cold and darkness, i.e., on October 22–24, and ended hibernation in the first half of April. Hibernation consisted of a sequence of multiday torpor bouts, interrupted by euthermic intervals. Thus, the patterns of hibernation in woolly dormice were similar to those observed in classical hibernating mammals.  相似文献   

11.
Columbid birds represent a useful model taxon for examining adaptation in metabolic and thermal traits, including the effects of insularity. To test predictions concerning the role of insularity and low predation risk as factors selecting for the use of torpor, and the evolution of low basal metabolic rate in island species, we examined thermoregulation under laboratory and semi-natural conditions in a mainland species, the African Green Pigeon (Treron calvus). Under laboratory conditions, rest-phase body temperature (T b) was significantly and positively correlated with air temperature (T a) between 0 and 35 °C, and the relationship between resting metabolic rate (RMR) and T a differed from typical endothermic patterns. The minimum RMR, which we interpret as basal metabolic rate (BMR), was 0.825 ± 0.090 W. Green pigeons responded to food restriction by significantly decreasing rest-phase T b, but the reductions were small (at most ~5 °C below normothermic values), with a minimum T b of 33.1 °C recorded in a food-deprived bird. We found no evidence of the large reductions in T b and metabolic rate and the lethargic state characteristic of torpor. The absence of torpor in T. calvus lends support to the idea that species restricted to islands that are free of predators are more likely to use torpor than mainland species that face the risk of predation during the rest-phase. We also analysed interspecific variation in columbid BMR in a phylogenetically informed framework and verified the conclusions of an earlier study which found that BMR is significantly lower in island species compared to those that occur on mainlands.  相似文献   

12.
We assessed infrared thermography (IRT) as a tool for evaluating spatial and temporal surface temperature patterns in juvenile female harbor seals (Phoca vitulina, n=6) and adult female Steller sea lions (Eumetopias jubatus, n=2). Following a technical assessment of the influence of environmental parameters on the specific camera to be used, we identified regional and seasonal variability of surface temperatures. Variation was observed in several seasonal transitions (winter, reproductive, molt) in ten monitored body regions. Spatially and temporally consistent thermal patterns in the shoulder, axillae, foreflipper and hindflipper suggest thermal windows in both species.  相似文献   

13.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

14.
Summary Three subspecies ofPeromyscus inhabiting the montane, foothill, and coastal plain regions of the Carolinas were trapped in midwinter and the occurrence of spontaneous and ration-induced daily torpor was monitored via biotelemetric determination of body temperature. All tests were undertaken with field-caught mice that were subjected to a minimum of laboratory acclimation (two days). The tendency to enter torpor in the presence of adequate food was highest inP. maniculatus nubiterrae, whose natural montane habitat presents it with the greatest seasonal stress in terms of ambient temperature and food availability. This species exhibited significantly (P<0.05) longer spontaneous torpor bouts than did the two lowland subspecies,P. gossypinus gossypinus andP. leucopus leucopus (Table 1). Restriction of food to one-half thead libitum level increased the frequency, duration, and depth (mean minimum body temperature) of torpor in all three species (Fig. 1).P. maniculatus, however, displayed significantly (P<0.001) longer episodes of torpor induced by rationing than did either of the other two subspecies. The ability to compensate for a reduction in energy intake by adjusting levels of energy utilization may profoundly affect survival during short-term environmental stress in any of these three species.  相似文献   

15.
We studied how food abundance and consumption regulates torpor use and internal organ size in the Chilean mouse-opossum Thylamys elegans (Dielphidae), a small nocturnal marsupial, endemic in southern South America. We predicted that exposure to food rations at or above the minimum energy levels necessary for maintenance would not lead to any signs of torpor, while reducing food supply to energy levels below maintenance would lead to marked increases in frequency, duration and depth of torpor bouts. We also analyzed the relationship between food availability and internal organ mass. We predicted a positive relationship between food availability and internal organ size once the effect of body size is removed. Animals were randomly assigned to one of two groups and fed either 70, 100 or 130% of their daily energy requirement (DER). We found a positive and significant correlation between %DER and body temperature, and also between %DER and minimum body temperature. In contrast, for torpor frequency, duration and depth, we found a significant negative correlation with %DER. Finally, we found a significant positive correlation between the %DER and small intestine and ceacum dry mass. We demonstrate that when food availability is limited, T. elegans has the capacity to reduce their maintenance cost by two different mechanisms, that is, increasing the use of torpor and reducing organ mass.  相似文献   

16.
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.  相似文献   

17.
Mechanisms that influence body temperature patterns in black-tailed prairie dogs are not well understood. Previous research on both free-ranging and laboratory populations of black-tailed prairie dogs (Cynomys ludovicianus) has suggested that reductions in ambient temperature and food and water deprivation are the primary factors that stimulate torpor in this species. In other species, however, torpor has been shown to be influenced by a multitude of factors, including innate circadian and circannual timing mechanisms, energy status, and reproductive behaviors. Our objective was to clarify the influence of weather, sex, and intrinsic timing mechanisms on the body temperature patterns of free-ranging black-tailed prairie dogs. We monitored body temperatures of eight adult (>1 yr) prairie dogs from November 1999 to June 2000. Prairie dogs showed distinct daily and seasonal body temperature patterns, which reflected changes in ambient temperatures that occurred during these periods. These patterns of daily and seasonal heterothermy suggest that body temperature patterns of black-tailed prairie dogs may be driven by an innate timing mechanism. All prairie dogs entered torpor intermittently throughout winter and spring. Torpor bouts appeared to be influenced by precipitation and reductions in ambient temperature. Our results also suggest that reproductive behaviors and circadian timing may influence torpor in this species.  相似文献   

18.
Summary The durations of the intervals of torpor and euthermia during mammalian hibernation were found to be dependent on body mass. These relationships support the concept that the timing of body temperature changes is controlled by some metabolic process. Data were obtained from species spanning nearly three orders of magnitude in size, that were able to hibernate for over six months without food at 5°C. The timing of body temperature changes was determined from the records of copper-constantan thermocouples placed directly underneath each animal. Because all species underwent seasonal changes in their patterns of hibernation, animals were compared in midwinter when the duration of euthermic intervals was short and relatively constant and when the duration of torpid intervals was at its longest. Large hibernators remained euthermic longer than small hibernators (Fig. 2). This was true among and within species. The duration of euthermic intervals increased with mass at the same rate (mass0.38) that mass-specific rates of euthermic metabolism decrease, suggesting that hibernators remain at high body temperatures until a fixed amount of metabolism has been completed. These data are consistent with the theory that each interval of euthermia is necessary to restore some metabolic imbalance that developed during the previous bout of torpor. In addition, small species remained torpid for longer intervals, than large species (Fig. 3). The absolute differences between different-sized species were large, but, on a proportional basis, they were comparatively slight. Mass-specific rates of metabolism during torpor also appear to be much less dependent on body mass than those during euthermia, but the precision of these metabolic measurements is insufficient for them to provide a conclusive test of the metabolic theory. Finally, small species with high mass-specific rates of euthermic metabolism are under tighter energetic constraints during dormancy than large species. The data presented here show that, in midwinter, small species compensate both by spending less time at high body temperatures following each arousal episode and by arousing less frequently, although the former is far more important energetically than the latter.  相似文献   

19.
Patterns of spontaneous and induced daily torpor were measured in the Afrotropical pouched mouse (77–115?g), Saccostomus campestris, in response to photoperiod, temperature, and food deprivation, using temperature telemetry. Photoperiod had no influence on the incidence, depth, or duration of daily torpor in either males and females. Although the testis size index decreased in response to food deprivation and photoperiod by a maximum of 24%, full testis regression did not occur. Torpor bout duration was, on average, 5.3?h, independent of photoperiod and ambient temperature. Males did not enter torpor in response to food deprivation but did in response to low ambient temperature, though significantly less frequently than females. At normothermia, the body temperatures (daily minimum, mean, maximum) of males were significantly lower than those of females. Minimum body temperatures of both males and females during torpor did not fall below 20?°C at an ambient temperature of 15?°C. The patterns of torpor measured here differ from those observed in species from strongly seasonal environments. They suggest adaptation to an environment rendered unpredictable by the El Niño Southern Oscillations. As an aseasonal, opportunistic breeder capable of year-round adaptive hypothermia, the pouched mouse represents an excellent model animal for research on physiological and behavioral adaptations to unpredictable environments.  相似文献   

20.
Food restriction affects the activation of the immune system although the metabolic cost associated with mounting such a response has rarely been examined except in model animals. Wild animals are constantly exposed to variations in the availability of food resources and they need to balance their energy budget to fight against pathogens. We examined the effect of food restriction in the fish eating Myotis (Myotis vivesi), a species of bat that experiences periods in which foraging is limited due to ambient conditions. We tested the hypothesis that acute food restriction (∼65% restriction for 1 night) would reduce the caloric response to lipopolysaccharidae (LPS) injection compared to bats fed ad libitum. We also measured a proxy for body temperature (Tskin) and expected reduced fever development when food intake was limited. Bats on the restricted diet had similar resting metabolic rate, total caloric cost and Tskin after the LPS challenge than when fed ad libitum. However, there was a delay in the metabolic and pyrogenic responses when bats were on the restricted diet. The effect of acute food restriction in delaying the hyperthermia development in fish eating Myotis might be of importance for its capacity to fight pathogens. Similar to other bats, the fish eating Myotis can fast for several consecutive days by entering torpor and future work is warranted to understand the effect of long periods of food restriction on bat immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号