首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment.  相似文献   

2.
Upstream migration rates were assessed for 1801 radio‐tagged adult spring–summer Chinook salmon Oncorhynchus tshawytscha through 12 unimpounded river reaches in the Columbia River basin from 1997 to 2002. Reaches were 36 to 241 km long (mean = 130 km) and included sections of the large Columbia and Snake Rivers and smaller free‐flowing tributaries. Median Chinook salmon migration rates ranged from <10 km day−1 in the Deschutes and Clearwater Rivers to >35 km day−1 in the Columbia and Snake Rivers. Using multivariate analyses, migration date explained the most variance in Chinook salmon migration rates while river discharge, migration year and migration reach were secondary. Both within and between years, Chinook salmon migrated more rapidly as migration date increased and more slowly when discharge was high. Arrival at high elevation spawning grounds at appropriate times and increased metabolic activity and reproductive maturation may explain the greater power of migration date, relative to river discharge, in predicting migration rates of Columbia basin spring–summer Chinook salmon.  相似文献   

3.
After spawning their first nest, female chinock salmon Oncorhynchus tshawytscha paired with small males ( c. 46% of female weight) spent an average of 16·2 h between spawning of successive nests compared with 9·6 h for females paired with large males ( c. 112% of female weight) ( P< 0·05). Neither frequencies of female nest construction behaviours (digging and probing) nor male courtship behaviour (crossovers and quivers) differed between large- and small-male pairs. Male quivering frequencies were correlated significantly with female digging and probing frequencies, whereas the crossover frequencies were not. It is suggested that delayed spawning by females in the presence of relatively small males is a primary mechanism by which females in the genus Oncorhynchus exhibit mate choice.  相似文献   

4.
Two non-direct homing behaviours, overshoot of natal tributaries and temporary non-natal tributary use, were evaluated for 5150 radio-tagged spring–summer Chinook salmon Oncorhynchus tshawytscha from 40 populations in the large Columbia River system. Over 7 years, 2–44% (mean = 15%) of individuals within each group temporarily entered presumed non-natal tributaries. In addition, many Chinook salmon from lower river tributaries initially travelled 3 to >250 km upstream in the main-stem river beyond confluences with presumed natal tributaries before returning to the natal sites ('overshoot'). Both overshoot and temporary tributary use behaviours declined exponentially with increasing distance from the natal tributary. Non-direct homing also increased later in the season as water temperatures rose and was associated with hatchery origin in some cases. The behaviours may reflect a mix of active searching for olfactory cues from natal sites, behavioural thermoregulation and orientation challenges in a large-river migration corridor transformed by dams and reservoirs. While anadromous salmonid homing is generally accurate and precise, these results indicate that route finding can be non-direct, potentially increasing energetic costs and harvest risks during migration.  相似文献   

5.
·
Juvenile Chinook salmon Oncorhynchus tshawytscha survival and behaviour were evaluated during a temperature increase from 8.8 to 23.2 °C.  相似文献   

6.
By jointly considering patterns of genetic and life-history diversity in over 100 populations of Chinook salmon from California to British Columbia, we demonstrate the importance of two different mechanisms for life-history evolution. Mapping adult run timing (the life-history trait most commonly used to characterize salmon populations) onto a tree based on the genetic data shows that the same run-time phenotypes exist in many different genetic lineages. In a hierarchical gene diversity analysis, differences among major geographic and ecological provinces explained the majority (62%) of the overall G(ST), whereas run-time differences explained only 10%. Collectively, these results indicate that run-timing diversity has developed independently by a process of parallel evolution in many different coastal areas. However, genetic differences between coastal populations with different run timing from the same basin are very modest (G(ST) < 0.02), indicating that evolutionary divergence of this trait linked to reproductive isolation has not led to parallel speciation, probably because of ongoing gene flow. A strikingly different pattern is seen in the interior Columbia River Basin, where run timing and other correlated life-history traits map cleanly onto two divergent genetic lineages (G(ST) approximately 0.15), indicating that some patterns of life-history diversity have a much older origin. Indeed, genetic data indicate that in the interior Columbia Basin, the two divergent lineages behave essentially as separate biological species, showing little evidence of genetic contact in spite of the fact that they comigrate through large areas of the river and ocean and in some locations spawn in nearly adjacent areas.  相似文献   

7.
Depending on population, wild Fraser River sockeye salmon Oncorhynchus nerka travel distances of <100 km to >1100 km and ascend elevations ranging from near sea‐level to 1200 m to reach spawning areas. Populations embarking on distant, high elevation migrations ( i.e . Early Stuart, Chilko and Horsefly populations) began their upriver spawning migrations with higher densities of somatic energy ( c . 9·2 to 9·8 MJ kg−1) and fewer eggs ( c . 3200 to 3800) than populations making shorter, low elevation migrations ( i.e . Weaver and Adams; c . 7·1 to 8·3 MJ kg−1 gross somatic energy and c . 4300 to 4700 eggs). Populations making difficult upriver migrations also had morphologies that were smaller and more fusiform than populations making less difficult migrations, traits that may facilitate somatic energy conservation by reducing transport costs. Indeed, fish travelling long distances expended less somatic energy per unit of migratory difficulty than those travelling shorter distances (2·8 to 3·8 kJ v . 10–1400 kJ). Consistent with evolutionary theory, difficult migrations appear to select for energy efficiency but ultimately fish making more difficult migrations produce fewer eggs, even when differences in body length have been accounted for. Despite large among‐population differences in somatic energy at the start of upriver migration, all populations completed migration and spawning, and subsequently died, with c . 4 MJ kg−1 of energy remaining, a level which may reflect a threshold to sustain life.  相似文献   

8.
Radiotelemetry and archival temperature loggers were used to reconstruct the thermal experience of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the highly regulated Willamette River system in Oregon. The study population is threatened and recovery efforts have been hampered by episodically high prespawn mortality that is likely temperature mediated. Over three years, 310 salmon were released with thermal loggers and 68 were recovered in spawning tributaries, primarily at hatchery trapping facilities downstream from high-head dams. More than 190,000 internal body temperature records were collected (mean ~2800 per fish) and associated with 14 main stem and tributary reaches. Most salmon experienced a wide temperature range (minima ~8–10 °C; maxima ~13–22 °C) and 65% encountered potentially stressful conditions (≥18 °C). The warmest salmon temperatures were in lower Willamette River reaches, where some fish exhibited short-duration behavioral thermoregulation. Cumulative temperature exposure, measured by degree days (DD) above 0 °C, varied more than seven-fold among individuals (range=208–1498 DDs) and more than two-fold among sub-basin populations, on average. Overall, ~72% of DDs accrued in tributaries and ~28% were in the Willamette River main stem. DD differences among individuals and populations were related to migration distance, migration duration, and salmon trapping protocols (i.e., extended pre-collection holding in tributaries versus hatchery collection shortly after tributary entry). The combined data provide spatially- and temporally-referenced information on both short-duration stressful temperature exposure and the biologically important total exposure. Thermal exposure in this population complex proximately influences adult salmon physiology, maturation, and disease processes and ultimately affects prespawn mortality and fitness. The results should help managers develop more effective salmon recovery plans in basins with marginal thermal conditions.  相似文献   

9.
The energetic cost for juvenile Chinook salmon Oncorhynchus tshawytscha to forage in habitats of different salinity and depth was quantified using a behavioural titration based on ideal free distribution theory. When given a choice between freshwater habitats of different depths (>0·83 or <0·83 m), a greater proportion of fish used the deeper habitat. When the deeper habitat was saltwater, the proportion of fish using it increased. When food was added to both the shallow freshwater and deep saline habitats, however, fish distribution returned to that observed when both habitats were fresh water. This indicates that the preference for deep saline habitats during the stratified phase was driven by some benefit associated with residency in deeper water, rather than salinity. The low perceived cost of low salinity might be in part due to the fish's ability to minimize this cost by only making brief forays into the alternate freshwater habitat. When the food ration delivered to the more costly, shallow habitat was 50% greater than that delivered to the less costly, deep habitat, fish distributed themselves equally between the two habitats, presumably because of equal net benefits. This study demonstrates that juvenile Chinook salmon prefer deep saline habitat to shallow freshwater habitats but will make brief forays into the freshwater habitat if food availability is sufficiently high.  相似文献   

10.
1. Conservation planning is often hampered by the lack of causal quantitative links between landscape characteristics, restoration actions and habitat conditions that impact the status of imperilled species. Here we present a first step toward linking actions on the landscape to the population status of endangered stream‐type Chinook salmon (Oncorhynchus tshawytscha). 2. We developed relationships between land use, landscape characteristics and freshwater habitat of spring Chinook salmon in the Wenatchee River basin. Available data allowed us to find relationships that described water temperatures at several life stages (prespawning, egg incubation and summer rearing) and substratum characteristics, including fine sediments, cobble and embeddedness. Predictors included altitude, gradient, mean annual precipitation, total and riparian forest cover, road density, impervious surface and alluvium. We used a model averaging approach to account for parameter and model selection uncertainty. Key predictors were total forest cover and impervious surface area for prespawning and summer rearing temperatures; precipitation and stream gradients were important predictors of the percent of fine sediments in stream substrata. 3. We estimated habitat conditions using these relationships in three alternative landscape scenarios: historical, no restoration and one that included a set of restoration actions from local conservation planning. We found that prespawning and summer temperatures were estimated to be slightly higher historically relative to current conditions in dry sparsely forested areas, but lower in some important Chinook salmon spawning and rearing areas and lower in those locations under the restoration scenario. Fine sediments were lower in the historical scenario and were reduced as a consequence of restoration actions in two areas currently unoccupied by Chinook salmon that contain reaches with some potential for high quality spawning and rearing. Cobble and embeddedness in general were predicted to be higher historically and changed little as a result of restoration actions relative to current conditions. 4. This modelling framework converts suites of restoration actions into changes in habitat condition, thereby enabling restoration planners to evaluate alternative combinations of proposed actions. It also provides inputs to models linking habitat conditions to population status. This approach represents a first step in estimating impacts of restoration strategies, and can provide key information for conservation managers and planners.  相似文献   

11.
Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory‐mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing.  相似文献   

12.
Tracking 47 post-spawned adult Atlantic salmon Salmo salar L. in a hydropower-regulated river through autumn, winter and spring revealed that winter survival was 56% and 75% in two study years, respectively, with higher mortality of males than females (50% vs. 33% and 100% vs. 13%, respectively). Some kelts (n = 7) displayed nondirected movements that were interpreted as a reconditioning period for an average of 9–17 days prior to directed downstream movements indicating the initiation of migration. Survival after the initiation of migration in spring was 83% and 94% to the hydropower dam in the first and second study years, and decreased to 60 and 63%, respectively, after dam passage. There were no further losses in the downriver reach in the second year, with the first year having a cumulative survival estimate of 53% to the river mouth. Kelts approached the dam when the spillway gates were available as a passage option most of the time (64%–75%), but some kelts arrived at the dam or had not yet passed when spillways were closed (n = 6) and the only remaining passage option was restricted to the turbines. However, all but one kelt that must have passed via turbine were successful in reaching the river mouth. Migratory delay presumably due to searching behaviour caused by low water flow was estimated at approximately 6 days as migration rates were significantly slower in the reservoir (median ± s.e. 8.5 ± 2.5 km day−1) than up- (29.7 ± 5.0 km day−1) or downriver (22.1 ± 3.1 km day−1). The proportion of time (median 30%) that kelts spent swimming upstream (searching behaviour) in the reservoir was a significant variable for migration success.  相似文献   

13.
Bioenergetics modeling was used to estimate zooplankton prey consumption of hatchery and unmarked stocks of juvenile chum salmon (Oncorhynchus keta) migrating seaward in littoral (nearshore) and neritic (epipelagic offshore) marine habitats of southeastern Alaska. A series of model runs were completed using biophysical data collected in Icy Strait, a regional salmon migration corridor, in May, June, July, August, and September of 2001. These data included a temperature (1-m surface versus surface to 20-m average), zooplankton standing crop (surface to 20-m depth versus entire water column), chum salmon diet (percent weight of prey type consumed), energy densities, and weight. Known numbers of hatchery releases were used in a cohort reconstruction model to estimate total abundance of hatchery and wild chum salmon in the northern region of southeastern Alaska, given average survival to adults and for two different (low and high) early marine littoral mortality rate assumptions. Total prey consumption was relatively insensitive to temperature differences associated with the depths potentially utilized by juvenile chum salmon. However, the magnitudes and temporal patterns of total prey consumed differed dramatically between the low and high mortality rate assumptions. Daily consumption rates from the bioenergetics model and CPUE abundance from sampling in Icy Strait were used to estimate amount and percentage of zooplankton standing crop consumed by mixed stocks of chum salmon. We estimated that only a small percentage of the available zooplankton was consumed by juvenile chum salmon, even during peak abundances of marked hatchery and unmarked mixed stocks in July. Total daily consumption of zooplankton by all stock groups of juvenile chum salmon was estimated to be between 330 and 1764 g/km2d1 from June to September in the neritic habitat of Icy Strait. As with any modeling exercise, model outputs can be misleading if input parameters and underlying assumptions are not valid; therefore, additional studies are warranted, especially to determine physiological input parameters, and to improve abundance and mortality estimates specific to juvenile chum salmon. Future bioenergetics modeling is also needed to evaluate consumption by the highly abundant, vertically migrating planktivorous that co-occurred in our study; we suggest that these fishes have a greater impact on the zooplankton standing crop in Icy Strait than do hatchery stock groups of juvenile chum salmon.  相似文献   

14.
Juvenile chum Oncorhynchus keta and pink Oncorhynchus gorbuscha salmon change the composition of their visual pigments when they move from coastal waters to offshore in the Okhotsk Sea. Levels of the visual pigment rhodopsin were found to be high on the coast, while porphyropsin levels were high in offshore waters in both species. These facts suggest visual function may be similar, allowing them to coexist in the same sea area.  相似文献   

15.
The movements of 24 hatchery-reared Atlantic salmon Salmo salar smolts, with miniature acoustic transmitters (pingers) implanted surgically, were determined after release in the coastal waters of Passamaquoddy Bay (mean tide range 6 m), New Brunswick, Canada, to describe the first stages of seaward migration. Automated pinger detection at fixed sites, and pinger location and tracking by boat were used. Post-smolts left the release area rapidly, and the majority moved to open waters of the bay within several tidal cycles. Initially, post-smolts moved with a seaward orientation on ebb tides and held positions on flood tides. Their movements into open waters were diurnal, and the timing corresponded with the state of the tide during which they moved through a narrow channel. Post-smolts moved preferentially through this passageway with the aid of the tidal stream. Successful movements out through the channel occurred during ebb tides and any movements back in were during flood tides. Ground speed of fish moving through the channel was 4·2 body lengths s−1 and faster than the tidal stream velocities in the channel. The relative velocity of fish swimming through the channel was 2 body lengths s−1. Post-smolt movement was indicative of active, directed swimming with a reliance on ebb-tide transport for migration through a coastal area with strong tidal currents. Some post-smolts moved seaward directly with no apparent period of acclimation for the transfer to the marine environment, whereas others delayed their departure. These differences in behaviour were probably related to asynchrony in smolting when fish were released.  相似文献   

16.
Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream‐type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre‐spawn mortalities, average final post‐spawning somatic energy densities were low at 3·6 kJ g?1 in females and 4·1 kJ g?1 in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids.  相似文献   

17.
Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long‐term variation in salmon migration timing for multiple species across broad regions. We used long‐term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long‐term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long‐term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region‐wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large‐ (Pacific decadal oscillation), moderate‐ (sea surface temperature), and local‐scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long‐term shifts in phenology. Overall, there was extensive heterogeneity in long‐term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.  相似文献   

18.
Newly emerged Atlantic salmon (Salmo salar) were observed from May to August 1981 at six isolated redds in Washington County, Maine, USA. Territorial size and distribution were measured. At the end of the emergence period (12 to 28 May), fish maintained positions (stations) at redds where water velocity did not exceed 52 cm s–1 By 12 June, most salmon (80–96%) had moved off the redds of origin and had established territories 1 to 5 m from the redd. The area defended increased substantially after mid-June, but territorial aggression diminished by 15 July, and the fry dispersed downstream. All fish observed were territorial, and the percentage of time during which stations were held decreased from 89 in mid-May to as low as 40% in mid-June.Cooperators are the Maine Department of Inland Fisheries and Wildlife, University of Maine, U.S. Fish and Wildlife Service, and the Wildlife Management Institute  相似文献   

19.
The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, L ETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号