首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

2.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

3.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

4.
Quantifying intraspecific variation in heat tolerance is critical to understand how species respond to climate change. In a previous study, we recorded variability in critical thermal maxima (CTmax) by 3 °C among populations of small Iberian lizard species, which could substantially influence predictions of climate-driven activity restriction. Here, we undertake experiments to examine whether we could reproduce similar levels of heat-tolerance variability in response to water deficit. We hypothesized that deprivation of drinking water should increase variability in CTmax between populations more than deprivation of food under the theoretical expectation that the variation of the more limiting resource must trigger stronger variation in physiological performance. We measured CTmax after manipulating availability of live prey and drinking water in two populations of an arid and a mesic lizard species from the Iberian Peninsula. We quantified a mean CTmax across all studied lizards of 44.2 °C ± 0.2 SE for the arid species and 41.7 °C ± 0.3 SE for the mesic species. Using multimodel inference, we found that water deprivation (combined with food supply) caused population differences in CTmax by 3 to 4 °C which were two to three times wider than population differences due to food deprivation (combined with water supply) or to food and water provision. To highlight the need for more thermo-hydroregulatory research, we examined bias in research effort towards thermal versus hydric environmental effects on heat tolerance through a systematic literature review. We show that environmental temperature has been used five times more frequently than precipitation in ecological studies of heat tolerance of terrestrial species. Studies linking thermal tolerance of ectotherms to the interplay of air temperature and water availability are needed in the face of projected increases in aridity and drought in the 21st century, because the balance of body temperature and water resources are functionally interlinked.  相似文献   

5.
The upper critical thermal maximum (CTmax) of metazoans varies over a wide range, and its determinative factors, such as oxygen limitation, remain controversial. Induction of thermoprotective mechanisms after challenge by sublethal heat stress has been well documented in many organisms, including the model fly Drosophila melanogaster. Interestingly, however, other challenges—notably a period of anoxia—induce post-exposure thermoprotective effects in some organisms such as locusts and houseflies. Here I show, using thermolimit respirometry, that acute hypoxia during thermal stress significantly reduced the CTmax of D. melanogaster, but only below an oxygen partial pressure of about 10 kPa (39.0±0.4 SE °C at 9.3 kPa vs. 36.0±0.2 SE °C at 3.5 kPa). Likewise, the scope for voluntary motor activity declined sharply below 10 kPa and was essentially eliminated at 2.3 kPa. Respiratory water loss increased highly significantly below about 10 kPa. The post-CTmax release of a large quantity of CO2 is shown to be independent of loss of spiracular control, but dependent at least in part on oxygen availability. The results are broadly in accord with Pörtner's oxygen limitation hypothesis, but suggest that acute oxygen limitation only becomes an important factor at partial pressures less than half of typical atmospheric levels.  相似文献   

6.
South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive global insect pest of tomato, Solanum lycopersicum (Solanaceae). In nature, pests face multiple overlapping environmental stressors, which may significantly influence survival. To cope with rapidly changing environments, insects often employ a suite of mechanisms at both acute and chronic time-scales, thereby improving fitness at sub-optimal thermal environments. For T. absoluta, physiological responses to transient thermal variability remain under explored. Moreso, environmental effects and physiological responses may differ across insect life stages and this can have implications for population dynamics. Against this background, we investigated short and long term plastic responses to temperature of T. absoluta larvae (4th instar) and adults (24–48 h old) from field populations. We measured traits of temperature tolerance vis critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)], heat knockdown time (HKDT), chill coma recovery time (CCRT) and supercooling points (SCP). Our results showed that at the larval stage, Rapid Cold Hardening (RCH) significantly improved CTmin and HKDT but impaired SCP and CCRT. Heat hardening in larvae impaired CTmin, CCRT, SCP, CTmax but not HKDT. In adults, both heat and cold hardening generally impaired CTmin and CTmax, but had no effects on HKDT, SCP and CCRT. Low temperature acclimation significantly improved CTmin and HKDT while marginally compromising CCRT and CTmax, whereas high temperature acclimation had no significant effects on any traits except for HKDT in larvae. Similarly, low and high temperature acclimation had no effects on CTmin, SCPs and CTmax, while high temperature acclimation significantly compromised adult CCRT. Our results show that larvae are more thermally plastic than adults and can shift their thermal tolerance in short and long timescales. The larval plasticity reported here could be advantageous in new envirnments, suggesting an asymmetrical ecological role of larva relative to adults in facilitating T. absoluta invasion.  相似文献   

7.
It has now been well established that insects can respond to variation in their environment via acclimation, yet the extent of the response varies among populations and environmental characteristics. One under-investigated theme which may contribute to this variation concerns acclimation effects across the life cycle. The present study explores how acclimation in the larval stage of Culex pipiens affects thermal relations in the adult stage. Mosquitoes were reared in a full factorial design at 18 or 26 °C as larvae and adults, then critical thermal maxima (CTmax) and metabolic rate–temperature relationships (MR–T) were determined for all 4 treatments. CTmax was positively affected by both larval and adult acclimation treatments. MR–T slope was significantly affected only by adult treatment: warm acclimated adults had on average shallower slopes and higher y-intercepts than cool acclimated ones. These results demonstrate that larval acclimation effects can alter adult phenotypes in a species whose life cycle includes two drastically different environments, an aquatic and a terrestrial stage. Studying insects with complex life cycles, especially those with aquatic or subterranean larval stages, can provide valuable information on the effects of thermal variability and predictability on phenotypic plasticity.  相似文献   

8.
Insects in temperate regions are predicted to be at low risk of climate change relative to tropical species. However, these assumptions have generally been poorly examined in all regions, and such forecasting fails to account for microclimatic variation and behavioural optimisation. Here, we test how a population of the dominant ant species, Iridomyrmex purpureus, from temperate Australia responds to thermal stress. We show that ants regularly forage for short periods (minutes) at soil temperatures well above their upper thermal limits (upper lethal temperature = 45.8 ± 1.3 °C; CTmax = 46.1 °C) determined over slightly longer periods (hours) and do not show any signs of a classic thermal performance curve in voluntary locomotion across soil surface temperatures of 18.6–57°C (equating to a body temperature of 24.5–43.1 °C). Although ants were present all year round, and dynamically altered several aspects of their thermal biology to cope with low temperatures and seasonal variation, temperature-dependence of running speed remained invariant and ants were unable to elevate high temperature tolerance using plastic responses. Measurements of microclimate temperature were higher than ant body temperatures during the hottest part of the day, but exhibited a stronger relationship with each other than air temperatures from the closest weather station. Generally close associations of ant activity and performance with microclimatic conditions, possibly to maximise foraging times, suggest I. purpureus displays highly opportunistic thermal responses and readily adjusts behaviour to cope with high trail temperatures. Increasing frequency or duration of high temperatures is therefore likely to result in an immediate reduction in foraging efficiency. In summary, these results suggest that (1) soil-dwelling temperate insect populations may be at higher risks of thermal stress with increased frequency or duration of high temperatures resulting from climate change than previously thought, however, behavioural cues may be able to compensate to some extent; and (2) indices of climate change-related thermal stress, warming tolerance and thermal safety margin, are strongly influenced by the scale of climate metrics employed.  相似文献   

9.
Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10 °C and 20 °C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34 °C, a critical thermal maxima of 34.6–41.4 °C, and a critical thermal minima of 2.6–0.8 °C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner.The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change.  相似文献   

10.
While heat acclimatization reflects the development of heat tolerance, it may weaken an ability to tolerate cold. The purpose of this study was to explore cold-induced vasodilation (CIVD) responses in the finger of tropical indigenes during finger cold immersion, along with temperate indigenes. Thirteen tropical male indigenes (subjects born and raised in the tropics) and 11 temperate male indigenes (subjects born and raised in Japan and China) participated. Subjects immersed their middle finger at 4.3±0.8 °C water for 30 min. Rectal temperature, skin temperatures, finger skin blood flow, blood pressure and subjective sensations were recorded during the test. The results showed that: (1) the tropical group demonstrated a lower minimum (Tmin), maximum (Tmax) and mean finger temperature (Tmean) compared to those of the temperate group (P<0.05); (2) seven tropical indigenes demonstrated a late-plateau type of CIVD pattern, which is characterized by a pronounced 1st vasoconstriction and a single CIVD with a faint and weak 2nd vasoconstriction, whereas no temperate indigene demonstrated the late-plateau type; and (3) the hand temperature at the end of finger immersion was 3 °C lower in the tropical than the temperate group (P<0.05). These results indicate that tropical indigenes have less active responses of arterio-venous anastomoses in the finger and weaker vasoconstrictions after the first CIVD response during finger cold immersion, which can be considered as being more vulnerable to cold injury of the periphery in severe cold.  相似文献   

11.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

12.
To forecast biological responses to changing environments, we need to understand how a species''s physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.  相似文献   

13.
To explore whether temperature-dependent increases in cardiac output (Q) are mediated solely through heart rate (fH) in fish to ensure adequate/efficient blood oxygenation, we injected steelhead trout with saline (control) or zatebradine hydrochloride (1.0 mg kg−1), and measured blood oxygen status, cardiorespiratory variables and cardiorespiratory synchrony during a critical thermal maximum (CTMax) test. The increasing temperature regimen itself (from 12 °C to CTMax) resulted in large decreases in arterial oxygen partial pressure (PaO2) and content (CaO2) (by ∼35% and 25%, respectively). Further, there was little evidence of cardiorespiratory synchrony at 12 °C, and the number of fish that showed synchrony at high temperatures only increased marginally (to 3 out of 7) despite the large decrease in PaO2. These results: (1) indicate that in some situations (e.g. when ventilation is exclusively/predominantly dependent on buccal–opercular pumping) the upper thermal tolerance of fish may be constrained by both cardiovascular and ventilatory performance; and (2) question the importance of cardiorespiratory synchrony (ventilation–perfusion matching) for gas exchange in salmonids, and fishes, in general.  相似文献   

14.
The salinity, temperature and pH tolerance of Procephalothrix simulus Iwata, 1952, were experimentally studied. In hypo-media, the nemerteans could survive 96 h in 3.3‰ solution at 10 °C (median lethal salinity [LS50] was not determined at this temperature), and 96 h LS50 were 7.3‰ and 13.5‰ at 20 °C and 30 °C, respectively. In hyper-media, 96 h LS50 values were 53.9‰, 47.1‰ and 41.4‰ at 10 °C, 20 °C and 30 °C, respectively. The trend of body weight changes in diluted media indicated that this nemertean is a volume regulator. During a 96-h exposure in media at 0 °C, worms were thanatoid but could recover if the temperature was gradually elevated to 20 °C. In thermal tolerance experiments, the nemertean survived 96 h in seawater of 30 °C, and worms suffered high mortalities when the temperature exceeded 32 °C. Present results suggest that the interaction of temperature and salinity on the lethal effects on P. simulus is significant (P < 0.05). Elevated temperature (range 10-30 °C) decreased the worm's solute tolerance, and elevated salinity (range 18-38‰) decreased the worm's thermal tolerance. The survival pH level for this nemertean ranged from 5.00 to 9.20.  相似文献   

15.
The incidence and severity of environmental stressors associated with global climate change are increasing and insects frequently face variability in temperature and moisture regimes at variable spatio-temporal scales. Coincidental with this, is increased thermal and hydric stress on insects as warming increases vapour pressure deficit (VPD), the drying power of the air. While the effects of mean temperatures on fitness are widely documented, fluctuations in both temperature and relative humidity (RH) are largely unexplored. Here, we investigated the effects of dynamic temperature and RH fluctuations (around the mean [28°C; 65% RH]) on low and high thermal tolerance of laboratory-reared adult invasive Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), measured as critical thermal minima (CTmin), critical thermal maxima (CTmax), chill coma recovery time (CCRT) and heat knockdown time (HKDT). Our results show that increased environmental amplitude significantly influenced low and high temperature responses and varied across traits tested. The highest amplitude (δ12°C; 28% RH) compromised CTmin, CCRT and HKDT traits while enhancing CTmax. Similarly, acclimation to δ3°C; 7% RH compromised both low (CTmin and CCRT) and high (CTmax and HKDT) fitness traits. Variations in fitness reported here indicate significant roles of combined thermal and moisture fluctuations on B. dorsalis fitness suggesting caveats that are worthy considering when predicting species responses to climate change. These results are significant for B. dorsalis population phenology, management, quantifying vulnerability to climate variability and may help modelling future biogeographical patterns.  相似文献   

16.
Current trends of global climate change affect marine ectothermal animals not only through the increase in ambient temperature. Synergistic effects of carbon dioxide and temperature changes as well as more frequent hypoxia events must also be considered. As a first attempt, the combined effects of warming and elevated CO2 concentrations were investigated in the edible crab (Cancer pagurus). Arterial oxygen tension (PaO2) in the haemolymph was recorded on-line during a progressive warming scenario from 10 to 22 °C and cooling back to 10 °C. Hypercapnia (1% CO2) caused a significant reduction of oxygen partial pressure in the haemolymph as well as a large, 5 °C downward shift of upper thermal limits of aerobic scope. The present findings are the first to show that hypercapnia causes enhanced sensitivity to heat and thus, a narrowing of the thermal tolerance window of a marine ectotherm. Such interactions of ambient temperature and anthropogenic increases in ambient CO2 concentrations will need to be considered during future investigations of the effects of climate change on ecosystems.  相似文献   

17.
As stream temperatures increase due to factors such as heated runoff from impervious surfaces, deforestation, and climate change, fish species adapted to cold water streams are forced to move to more suitable habitat, acclimate or adapt to increased thermal regimes, or die. To estimate the potential for adaptation, a (within individual) repeatable metric of thermal tolerance is imperative. Critical thermal maximum (CTmax) is a dynamic test that is widely used to measure thermal tolerance across many taxa and has been used in fishes for decades, but its repeatability in most species is unknown. CTmax tests increase water temperature steadily over time until loss of equilibrium (LOE) is achieved. To determine if CTmax is a consistent metric within individual fish, we measured CTmax on the same lab-held individually-marked adult brook trout Salvelinus fontinalis at three different times (August & September 2016, September 2017). We found that CTmax is a repeatable trait (Repeatability ± S.E.: 0.48 ± 0.14). CTmax of individuals males was consistent over time, but the CTmax of females increased slightly over time. This result indicates that CTmax is a robust, repeatable estimate of thermal tolerance in a cold-water adapted fish.  相似文献   

18.
Conidial tolerance to the upper thermal limits of summer is important for fungal biocontrol agents, whose conidia are formulated into mycoinsecticides for field application. To develop an efficient assay system, aerial conidia of eight Metarhizium anisopliae, four M. anisopliae var. anisopliae, and six M. anisopliae var. acridum isolates with different host and geographic origins were wet-stressed for ≤180 min at 48 °C or incubated for 14 d colony growths at 10-35 °C. The survival ratios (relative to unstressed conidia) of each isolate, examined at 15-min intervals, fit a logistic equation (r2 ≥ 0.975), yielding median lethal times (LT50s) of 14.3-150.3 min for the 18 isolates stressed at 48 °C. Seven grasshopper isolates from Africa had a mean LT50 of 110 (73-150) min, but could not grow at 10 or 15 °C. The mean LT50 of five non-grasshopper isolates capable of growing at 10-35 °C was 16 (10-26) min only. Three isolates with typically low (type I), medium (type II), and high (type III) levels of tolerance to 48 °C were further assayed for ≤4-d tolerance of their conidia to the wet stress at 38, 40, 42, or 45 °C. The resultant LT50s decreased to 20, 53 and 167 min at 48 °C from 507, 1612, and 8256 min at 38 °C for types I, II and III, respectively. For the distinguished types, the logarithms of the LT50s were significantly correlated to the temperatures of 38-48 °C with an inverse linearity (r2 ≥ 0.88). The method developed to assay quantitatively fungal thermotolerance would be useful for screening of fungal candidates for improved pest control in summer.  相似文献   

19.
Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter.  相似文献   

20.
Climate change, sea level rise, and human freshwater demands are predicted to result in elevated temperature and salinity variability in upper estuarine ecosystems. Increasing levels of environmental stresses are known to induce the cellular stress response (CSR). Energy for the CSR may be provided by an elevated overall metabolic rate. However, if metabolic rate is constant or lower under elevated stress, energy for the CSR is taken from other physiological processes, such as growth or reproduction. This study investigated the examined energetic responses to the combination of temperature and salinity variability during a multigenerational exposure of partheogenetically reproducing Daphnia pulex. We raised D. pulex in an orthogonal combination of daily fluctuations in temperature (15, 15–25, 15–30 °C) and salinity (0, 0–2, 0–5). Initially metabolic rates were lower under all variable temperature and variable salinity treatments. By the 6th generation there was little metabolic variation among low and intermediate temperature and salinity treatments, but metabolic suppression persisted at the most extreme salinity. When grown in the control condition for the 6th generation, metabolic suppression was only observed in D. pulex from the most extreme condition (15–30 °C, 0–5 salinity). Generation time was influenced by acclimation temperature but not salinity and was quickest in specimens reared at 15–25 °C, likely due to Q10 effects at temperatures closer to the optima for D. pulex, and slowest in specimens reared at 15–30 °C, which may have reflected elevated CSR. Acute tolerance to temperature (LT50) and salinity (LC50) were both highest in D. pulex acclimated to 15–30 °C and salinity 0. LT50 and LC50 increased with increasing salinity in specimens raised at 15 °C and 15–25 °C, but decreased with increasing salinity in specimens raised at 15–30 °C. Thus, increasing temperature confers cross-tolerance to salinity stress, but the directionality of synergistic effects of temperature and salinity depend on the degree of environmental variability. Overall, the results of our study suggest that temperature is a stronger determinant of metabolism, growth, and tolerance thresholds, and assessment of the ecological impacts of environmental change requires explicit information regarding the degree of environmental variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号