首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The daily foraging patterns of seven colonies of the eastern tent caterpillar, Malacosoma americanum, were monitored photoelectronically during the last three larval stadia to provide the first detailed record of the foraging behavior of a gregarious caterpillar under field conditions. Colonies were active an average of 49.3% of each day. Three bouts of foraging, centered about 0600 h, 1500 h and 2000 h (EST), occurred daily during the fourth and fifth stadia. Although ambient temperatures were less favorable for foraging and food processing than at other times of the day, the caterpillars were most active at dusk and dawn, and spent comparatively little time away from the tent during the daylight hours. In the last (sixth) stadium, the caterpillars foraged only under the cover of darkness. A lack of relationship between the rate at which the caterpillars processed food and the spacing of their feeding bouts, indicates that this species follows a schedule of feeding and growth shaped by factors other than those directly related to feeding efficiency and ambient temperature. Colony foraging patterns may reduce caterpillar mortality by minimizing contact between larvae and day-active predators and parasitiods.  相似文献   

2.
Fifteen species of neotropical and three species of paleotropical bats are known either to roost in or to make tents in over 80 species of vascular plants. We summarize the current knowledge of bat-tent architecture, report two new styles of tents (conical and apical) from the Paleotropics, compare the similarity in tents constructed, or used, by neotropical and paleotropical bats, and consider possible functions of tents. Seven styles of tents are known from the Neotropics, three (conical, palmate umbrella, and apical tents) are known from both the Neo- and the Paleotropics, and one (stem tent) is unique to the Paleotropics. In the Neotropics tent-roosting and/or tent-making appears to be a behavior unique to the diverse microchiropteran family Phyllostomidae (subfamily Phyllostomatinae: tribe Stenodermatini), and in the Paleotropics two members of the megachiropteran family Pteropodidae and one member of the microchiropteran family Vespertilionidae are known to construct or roost in tents. Despite the variety of plant taxa used by bats in tent construction, there appears to be a limited number of different leaf forms that can be altered by bats and used as tents. We suggest that the similarity in tent architecture observed among the neotropical and paleotropical bats is a consequence of convergence in leaf morphology among forest understory plants. The congruence in tent-making/roosting behavior observed in members of the Stenodermatini and the Pteropodidae (genusCynopterus) suggests a phylogenetic influence on these behaviors. The similarity in tent-making and/or tent-roosting behavior and life-history traits (small, <70 g, mostly foliage-roosting frugivores) among these divergent neotropical and paleotropical taxa supports a convergence hypothesis in which members of these groups have become ecological equivalents. Although actual tent-making has been observed in only one bat species to date, we suggest that the principal selective force leading to the evolution of tent-making is a polygynous mating system whereby males construct tents to gain access to females. Tents in turn provide resources that offer protection from predators and inclement weather.  相似文献   

3.
Larvae of Malacosoma americanum (F.) an oligophagous species that feeds primarily on Prunus and other rosaceous trees, were compared to larvae of the more highly polyphagous congener M. disstria Hb., with respect to the efficiency of utilization of the foliage of a common host plant, Prunus serotina Ehrh. We obtained values similar to those reported for other Lepidoptera for the commonly used measures of the fraction of ingested food that was assimilated, and for the growth in dry weight per unit of food ingested or assimilated. Moreover, the two species did not differ in any measure of efficiency. Our results are compatible with the conclusion that specialized phytophagous insects do not use their host plants with greater physiological efficiency than do generalized insects.
Zusammenfassung Raupen von Malacosoma americanum, einer oligophagen Art, die sich vor allem auf Prunus und andern baumartigen Rosaceen. entwickelt, wurden mit Raupen der polyphageren Verwandten M. disstria in Hinblick auf die Verwertung der Blätter ihres gemeinsames Wirtes Prunus serotina verglichen. Wirerhielten ähnliche Werte wie sie früher für andere Lepidopteren publiziert worden waren und zwar in Bezug auf die üblichen Messwerte, Anteil verwertete Nahrung, Wachstum in Trockengewicht pro Einheit gefressene oder verwertete Nahrung. Zudem unterschieden sich die beiden Arten in keiner Masszahl für Effizienz. Unsere Resultate sind im Einklang mit der Folgerung, das spezialisierte phytophage Insekten ihre Wirtspflanzen nicht besser ausnützen als as polyphage Arten tun.
  相似文献   

4.
Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non‐native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non‐native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment – relatedness between conditions occurring in close temporal proximity – will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non‐native species. We conduct a 60‐day field mesocosm experiment to measure the population dynamics of the non‐native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated‐warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated‐warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed‐autocorrelated treatment were threefold and eightfold higher relative to warmed‐uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatments relative to D. pulex and were undetectable by the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming.  相似文献   

5.
Pinus edulis and Juniperus monosperma seedlings were inoculated separately with each of seven nematode species, and grown for 9 months at 20 C soil temperature. Hoplolaimus galeatus, Rotylenchus pumilis, Tylenchus exiguus, and Xiphinema americanum parasitized P. edulis seedlings, but did not significantly reduce seedling growth. Pinus edulis was not a host for Tylenchorhynchus cylindricus, Aphelenchoides cibolensis, or Criconemoides humilis. Xiphinema americanum and R. pumilis parasitized J. monosperma seedlings, and reduced their root weights and root collar diameters. Juniperus monosperma was not a host for A. cibolensis and T. exiguus, and parasitism of this tree species by T. cylindricus and C. humilis remains uncertain.  相似文献   

6.
The competitive abilities of a given species are inversely proportional to its tolerance to environmental stress. Thus, in estuaries, vegetation is generally controlled by salinity and flooding in their lower limits, and by biotic drivers in their upper limits. Crinum americanum L. is vastly distributed over flooded regions of American seacoast, frequently associated with stressful habitats. We aimed to explain the role of hydrologic, edaphic, and biotic drivers in the distribution of this species on the Massaguaçu River estuary, Southeastern Brazil (23°37′20″S and 54°21′25″W). We sampled randomly 400 plots in the estuary, and registered covering of all species, the height of the C. americanum individuals, and the relative height of the plots. We collected soil samples from every five plots. We measured the estuary level daily for two years. We used Correspondence Analysis, Simple and Canonical, and graphic analysis. The salinity has explained the major part of the observed pattern, and the C. americanum population was positively related to it. The estuary level was also important. C. americanum has presented higher densities in intermediary flooding classes than in the extremes of the gradient. Species reduction in regions of low salinity or its absence has probably been due to the highly competitive environment, and not to the lack of salt per se.  相似文献   

7.
Ten populations of Xiphinema americanum-group nematodes were reared from individual females to evaluate inter- and intraspecific variation under identical host and environmental conditions. Data indicated that morphometric variability of X. americanum was the result of genetic variation rather than phenotypic plasticity and that genetic heterogeneity was greater than previously thought. Morphometrics of single female derived (SFD) populations identified different genotypes present in the field populations. Stylet length was the least variable morphometric character of SFD populations, but collectively stylet measurements of all individuals formed an uninterrupted continuum ranging from 107-148 μm. Range and frequency of stylet measurements of field populations could be accounted for by the relative proportion of different genotypes in the population. Nine SFD populations were identified as X. americanum sensu stricto, and one SFD population was similar to X. californicum.  相似文献   

8.
It has long been assumed that prolonged holding of environmental samples at the ambient air temperature prior to bacteriological analysis is detrimental to isolation and detection of Vibrio cholerae, the causative agent of pandemic cholera. The present study was aimed at understanding the effect of transporting environmental samples at the ambient air temperature on isolation and enumeration of V. cholerae. For water and plankton samples held at ambient temperatures ranging from 31°C to 35°C for 20 h, the total counts did not increase significantly but the number of culturable V. cholerae increased significantly compared to samples processed within 1 h of collection, as measured by culture, acridine orange direct count, direct fluorescent-antibody-direct viable count (DFA-DVC), and multiplex PCR analyses. For total coliform counts, total bacterial counts, and DFA-DVC counts, the numbers did not increase significantly, but the culturable plate counts for V. cholerae increased significantly after samples were held at the ambient temperature during transport to the laboratory for analysis. An increase in the recovery of V. cholerae O1 and improved detection of V. cholerae O1 rfb and ctxA also occurred when samples were enriched after they were kept for 20 h at the ambient temperature during transport. Improved detection and isolation of toxigenic V. cholerae from freshwater ecosystems can be achieved by holding samples at the ambient temperature, an observation that has significant implications for tracking this pathogen in diverse aquatic environments.  相似文献   

9.
Regulation of wing muscle temperature is important for sustaining flight in many insects, and has been well studied in honeybees. It has been much less well studied in wasps and has never been demonstrated in Polistes paper wasps. We measured thorax, head, and abdomen temperatures of inactive Polistes dominulus workers as they warmed after transfer from 8 to ~25°C ambient temperature, after removal from hibernacula, and after periods of flight in a variable temperature room. Thorax temperature (T th) of non-flying live wasps increased more rapidly than that of dead wasps, and T th of some live wasps reached more than 2°C above ambient temperature (T a), indicating endothermy. Wasps removed from hibernacula had body region temperatures significantly above ambient. The T th of flying wasps was 2.5°C above ambient at T a = 21°C, and at or even below ambient at T a = 40°C. At 40°C head and abdomen temperatures were both more than 2°C below T a, indicating evaporative cooling. We conclude that P. dominulus individuals demonstrate clear, albeit limited, thermoregulatory capacity.  相似文献   

10.
The tents of different ant species collected from young cocoa trees in their first or second year of bearing and free from visible pod rot, were tested for the presence of Phytopthtora palmivora by inoculating wounded cocoa pods with tent material. Tents of all species harboured viable P. palmivora but those consisting mainly of soil were more frequently positive than plant debris-type tents. Although Anoplolepis longipes, a dominant, ground nesting, non-tent building species sometimes transported inocula in the laboratory, it did not significantly increase black pod infection in the field. Trees infested with the dominant debris tent building species, Technomyrmex albipes, however, had significantly more black pod than those infested with A. longipes or trees without ants. A. longipes forms dense populations and can exclude other dominant ants and some cocoa pests; its introduction may be a potentially economical method of reducing the transmission of P. palmivora in redeveloped cocoa in Papua New Guinea.  相似文献   

11.
The population fluctuation and composition of Xiphinema americanum (sensu stricto) and X. rivesi were studied in a New York apple orchard (only X. americanum present), a Pennsylvania apple orchard (both X. americanum and X. rivesi present), and a Pennsylvania peach orchard (X. americanum, X. rivesi, and X. californicum present). Few clear trends in population fluctuation or composition were observed. The adult female was the predominant stage in most sample periods, and the reproductive period was limited to late spring and early summer. Only a few of the females at any sample period were gravid. All stages were present throughout the year, and all stages overwintered. Eggs in soil were not monitored. In the Pennsylvania apple orchard, X. americanum and X. rivesi were easily separated by morphological characteristics; however, the two species did not display differences in population structure or composition. The predominance of adults, the relatively low reproductive rates, and the association of these species with stable habitats suggest that the life strategies of X. americanum and X. rivesi are K-selected as opposed to r-selected.  相似文献   

12.

Background and Aims

Woodland spring ephemerals exhibit a relatively short epigeous growth period prior to canopy closure. However, it has been suggested that leaf senescence is induced by a reduction in the carbohydrate sink demand, rather than by changes in light availability. To ascertain whether a potentially higher net carbon (C) assimilation rate could shorten leaf lifespan due to an accelerated rate of storage, Erythronium americanum plants were grown under ambient (400 ppm) and elevated (1100 ppm) CO2 concentrations.

Methods

During this growth-chamber experiment, plant biomass, bulb starch concentration and cell size, leaf phenology, gas exchange rates and nutrient concentrations were monitored.

Key Results

Plants grown at 1100 ppm CO2 had greater net C assimilation rates than those grown at 400 ppm CO2. However, plant size, final bulb mass, bulb filling rate and timing of leaf senescence did not differ.

Conclusions

Erythronium americanum fixed more C under elevated than under ambient CO2 conditions, but produced plants of similar size. The similar bulb growth rates under both CO2 concentrations suggest that the bulb filling rate is dependant on bulb cell elongation rate, rather than on C availability. Elevated CO2 stimulated leaf and bulb respiratory rates; this might reduce feed-back inhibition of photosynthesis and avoid inducing premature leaf senescence.Key words: Source–sink relations, assimilation rates, growth rates, CO2 enrichment, respiration, spring ephemeral, leaf senescence, bulbous plant, carbohydrate storage, Erythronium americanum  相似文献   

13.
We investigated the occurrence of and mechanisms responsible for acclimation of fine‐root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine‐root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine‐root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots.  相似文献   

14.
Previous work in our laboratory described the in vitro killing of Borrelia burgdorferi when co-cultured with saliva from adult Amblyomma americanum. Borreliacidal activity was not evident using Ixodes scapularis saliva. Mixing trypsin with saliva eliminated the borreliacidal activity of A. americanum saliva, while incorporating a trypsin inhibitor restored all borreliacidal activity, indicating this factor was of protein or peptide origin. One-dimensional PAGE indicated at least 7 major protein differences between I. scapularis and A. americanum saliva. To determine the borreliacidal factor, A. americanum saliva was fractionated by gel filtration and subsequent killing of B. burgdorferi was associated with a single fraction. Two-dimensional gel analysis indicated protein and/or peptide(s) in borreliacidal fractions running between 38 and 64 kDa. Finally, admixing saliva with the phospholipase A2 inhibitor oleyloxyethyl phosphorylcholine completely eliminated the ability of A. americanum saliva to kill B. burgdorferi. These studies indicate the borreliacidal activity found in A. americanum saliva is likely due to phospholipase A2 enzymatic activity.  相似文献   

15.
The consequences of variations in environmental temperature on innate immune responses in birds are by and large not known. We investigated the influence of ambient temperature on the febrile response in female Pekin ducks (Anas platyrhynchos). Ducks, implanted with temperature data loggers to measure body temperature, were injected with lipopolysaccharide (100 μg kg−1) to evoke febrile responses and kept at ambient temperatures higher, within, and lower than their thermoneutral zone (n=10), and in conditions that simulated one day of a heat wave (n=6). Compared to the febrile response at thermoneutrality, at low temperatures, febrile responses were significantly attenuated; fevers reached lower magnitudes (from basal body temperature of 41.2±0.3 °C to a peak of 42.0±0.3 °C). In contrast, at high ambient temperatures, ducks rapidly developed significantly enhanced fevers, which reached markedly higher febrile peaks (from basal body temperature of 41.6 °C to a peak of 44.0 °C in a simulated heat wave when ambient temperature reached 40 °C). These results indicate that ambient temperature affects the febrile response in female Pekin ducks. Our findings reveal a key difference in febrile mediation between ducks and mammals, and have implications for avian survival because high environmental temperatures during febrile mediation could lead to febrile responses becoming physiologically deleterious.  相似文献   

16.
Rapid, reversible colour change is unusual in animals, but is a feature of male chameleon grasshoppers (Kosciuscola tristis). Understanding what triggers this colour change is paramount to developing hypotheses explaining its evolutionary significance. In a series of manipulative experiments the author quantified the effects of temperature, and time of day, as well as internal body temperature, on the colour of male K. tristis. The results suggest that male chameleon grasshoppers change colour primarily in response to temperature and that the rate of colour change varies considerably, with the change from black to turquoise occurring up to 10 times faster than the reverse. Body temperature changed quickly (within 10 min) in response to changes in ambient temperature, but colour change did not match this speed and thus colour is decoupled from internal temperature. This indicates that male colour change is driven primarily by ambient temperature but that their colour does not necessarily reflect current internal temperature. I propose several functional hypotheses for male colour change in K. tristis.  相似文献   

17.
The colony-forming ability and the rate of reproduction of Bacillus stearothermophilus were determined as a function of temperature and pressure. Colonies were formed between 39 and 70°C at atmospheric pressure and between 54 and 67°C at 45 MPa. Colonies did not form at 55.9 MPa. The rate of reproduction in broth cultures decreased with increasing pressure at all temperatures. The rate of reproduction diminished rapidly with pressure above 10.4 MPa. Therefore, increased hydrostatic pressure was not sufficient to enable B. stearothermophilus to function beyond the temperature limiting growth and reproduction at atmospheric pressure, and B. stearothermophilus should grow in naturally or artificially warmed regions of the deep sea, where the pressure is less than approximately 50 MPa, although growth rates would be low above 10 MPa.  相似文献   

18.
Global warming may induce significant changes in species life history traits particularly in amphibians, which are characterized by complex and plastic life cycles. Because both warming and predators are often suggested to reduce size at metamorphosis in amphibians, we hypothesized that the size at metamorphosis was further reduced by experimental warming in the presence of predators. We conducted a factorial-designed experiment involving two factors and two levels (warmed vs. ambient, lethal predator absence vs. presence, resulting in four treatments) using Rana kukunoris tadpoles in the eastern Tibetan Plateau, and we examined its behavioral, growth, and developmental responses to warming in the presence and absence of predatory beetles (Agabus sp.) for 13 weeks. During the course of the experiment, a similar level of tadpole mortality due to the diving beetles was found between ambient and warmed treatments, but the warming effect on size at metamorphosis depended on whether the predators were present or absent. In the absence of predators, warming did not significantly increase tadpole growth but advanced the timing of metamorphosis, such that size at metamorphosis of forelimb emergence and tail resorption was much reduced in terms of body fresh weight. In the presence of predators, warming increased tadpole growth rate much more than the development rate (as reflected by duration of the tadpole stage), and therefore the size at metamorphosis was significantly increased. The significant effect of the interaction between predator and warming on the size at metamorphosis could be attributed to the tadpole response in the frequencies of feeding, resting, and swimming to the predator activity level, which was in turn increased by warming. We suggest that warming-induced changes in life history traits should be studied in relation to species interaction so as to accurately predict ecological response of amphibians to the future warmed world.  相似文献   

19.
Pratylenchus penetrans and Ditylenchus dipsaci were reared at 15-16 C, and their behavior towards single and combined heat and CO₂ stimuli was studied at ambient temperatures of 8.6 and 27.3 C. At the lower temperature, attractivity of the heat source was prevalent in both species, but CO₂ was also attractive. At the higher ambient temperature (27.3 C), the reaction to CO₂ was more positive and more rapid than to heat. In fact, at this temperature only D. dipsaci was attracted to the heat source, whereas P. penetrans did not react positively. The combined stimulation of heat and CO₂ caused D. dipsaci to aggregate more strongly than did a single stimulus; this applied to both ambient temperatures. For P. penetrans exposed to the low temperature (8.6 C), the combined stimuli were about as attractive as was the better of the single stimuli; i.e., heat. At the high temperature (27.3 C), the combined stimulation was less effective than the better of the single stimuli; i.e., CO₂. At this ambient temperature, the thermonegative reaction seems to dominate over the CO₂-positive one. The reaction of D. dipsaci was generally stronger in all experimental variants than that of P. penetrans. Insofar as temperature gradients play a role in locating host plant roots, their efficacy would seem to be restricted to a favorable temperature range. Within this range, combined heat and CO₂ stimuli might improve attractivity.  相似文献   

20.
We investigated the induction of protective immunity against bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum by warmed water treatment in ayu (Plecoglossus altivelis). Fish were immersed in a live bacterial suspension (107 CFU mL−1) for 30 min and placed in 700 L concrete tanks. The 28 °C warmed water treatment lasted 3 days and began 1, 6, and 24 h after immersion in the live bacterial suspension. A naïve control fish group was immersed in a sterilized modified Cytophaga (MCY) broth instead of the bacterial suspension. Fourteen days after the immersion, agglutination antibody titers against F. psychrophilum were measured by using micro-titer methods. Fish were then exposed to a bacterial bath to infect them with live F. psychrophilum, and cumulative mortality was monitored. Fish treated with warmed water at 1, 6, and 24 h after immersion in the live bacterial suspension had cumulative mortalities of 36%, 30%, and 18%, respectively, all of which were significantly lower than the cumulative mortality of the naïve control fish (90%). Treated fish also showed high antibody titers against F. psychrophilum in agglutination tests. These results demonstrate that warmed water treatment could not only cure BCWD but also immunize the fish against the causative agent F. psychrophilum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号