首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to determine whether exposure to extremely low frequency magnetic field (ELF-MF) affects the normal diurnal rhythm of the pain threshold in mice. Pain thresholds were evaluated in mice using the hot plate test. A significant increase of pain threshold during night was observed compared to that during day. This rhythm was attenuated by both constant exposure to light (LL) and constant exposure to darkness (DD) for 5 days. Under DD exposure, the diurnal rhythm in pain threshold was restored when mice were exposed to ELF-MF (60 Hz, 1.5 mT for 12 h daily, from 08:00 to 20:00 h) for 5 days. The diurnal rhythm was not reversed under dark with reversed ELF-MF cycle (exposure to 1.5 mT from 20:00 to 08:00 h, next day) for 5 days, although pain threshold in the ELF-MF exposed period of night was slightly decreased. The diurnal rhythm of melatonin analgesic effect related to pain threshold was also observed under DD by the exposure of ELF-MF for 5 days, but not for 5 nights. The present results suggest that ELF-MF may participate in the diurnal rhythm of pain threshold by acting on the system that is associated with environmental light-dark cycle.  相似文献   

2.
We analysed the effect of daily temperature cycles in relation to constant temperature on day/night melatonin synthesis in frog eyecups in culture. Eyecups were cultured for 24 h under 12L:12D photoperiod and two thermal regimes, constant temperature (25, 15 and 5 °C) and thermoperiod (WL/CD, thermophase coinciding with photophase and cryophase coinciding with scotophase; and CL/WD, cryophase coinciding with photophase and thermophase coinciding with scotophase). A negative correlation between ocular serotonin N-acetyltransferase activity and culture temperature for both diurnal and nocturnal activities has been observed. This effect of increased ocular activity at low temperature is more pronounced than the well-known stimulatory effect of darkness, and it does not depend on the photoperiod phase. The lack of interactions between the phase of photoperiod and culture temperature indicates that the effects of both factors are independent. Nighttime temperature is the key factor in determining the amplitude of the melatonin rhythm in the Rana perezi retina. However, daytime temperature can not counteract the inhibitory effect of light on ocular melatonin synthesis. Accepted: 22 June 1995  相似文献   

3.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (2002). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041-1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

4.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041–1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

5.
The thermal preference of the freshwater snail Lymnaea auriculria (Gastropoda: Pulmonata), measured 49 times over 3 years, oscillated around a mean of 19·3°C, with an amplitude of 13·4°C. This oscillation was significantly phase-linked to both the natural photoperiod and natural ambient temperature. Lymnaea hatched and maintained in constant conditions of temperature (21°C) and photoperiod (12 h) over 2 years showed a constant thermal preference of 19·8±1·4°C. The preference was maintained between 19·5 and 20·4°C when the snails were kept at 5, 15, 20 and 27°C and in photoperiods of 8 and 16 h. In a changing artificial photoperiod which followed an annual cycle, the preference fluctuated about a mean of 19·3°C with an amplitude of 3·9°C. When the photoperiod was constant but the temperature oscillated the preference remained constant. Thus the circannual cycle seems to be an exogenous oscillation entrained by the photoperiod.  相似文献   

6.
We investigated the daily rhythm of the response to noradrenaline injections in Djungarian hamsters (Phodopus sungorus sungorus) at neutral ambient temperature, under long photoperiod (L:D 12:12) and after four weeks of acclimation to cold (10ºC) and short photoperiod (L:D 8:16). Animals were injected with noradrenaline (0.6 mg/kg) every four hours. Body temperature and gross motor activity were measured with MiniMitter transmitters implanted into abdominal cavity. Additionally, we measured body weight and food intake prior to, and after acclimation. After four weeks of acclimation, the experiment was performed under LD cycle and then repeated during one-day of constant light (LL) and constant darkness (DD). In animals acclimated to L:D 12:12 and ambient temperature of 25ºC, noradrenaline injections caused short-lasting increase in body temperature followed by marked decrease. There was no significant difference in the magnitude of the reaction between light and dark phase of the day. After acclimation to cold and L:D 8:16, under LD conditions, we recorded significant differences between the responses to the noradrenaline injections during light and dark phase of the day. Post-injection increase was higher during the day than during the night while following noradrenaline-induced hypothermia was much more pronounced in darkness. In experiments performed after acclimation to cold and short photoperiod but during one day of LL and DD regimes, these differences were attenuated. Data presented here indicate that in cold acclimated hamsters, the response to exogenous noradrenaline depends on the time of injection and it exhibits clear daily rhythm. The rhythmicity is altered under LL and DD regimes. It seems that post-injection increase in body temperature elicits following hypothermia. This hypothermia might be of a great ecological importance. Reasonable lowering of body temperature would be a protective mechanism, allowing for energy charge restoration.  相似文献   

7.
Modulation of a turgor-growth movement called circumnutation in sunflower (Helianthus annuus L.) was investigated using a picture analysis system. Two photoperiod conditions were applied: light–darkness conditions (LD) 8:8 and LD 20:10. After about 3 weeks of these regimes, the plants were placed under constant light to determine whether circadian regulation of circumnutation existed or not. The rhythms of movement activity with regard to the trajectory length, period, and shape of individual circumnutations were examined. Data were processed by Fourier spectral analysis. All the parameters, trajectory length, period, and shape, revealed the ability to entrain to the administered daily cycles (16 h or 30 h). We observed diurnal fluctuations of the circumnutation parameters with the phase of the highest trajectory length, the shortest period, and the highest shape coefficient (the most circular form) during the dark period. After the LD–LL transition, the parameters revealed periodicity, which was close to 24 h. After several days of a clear circadian free running rhythm, a gradual decrease of the amplitude of the rhythm was observed. However, the rhythm did not disappear completely. The trajectory length manifested the strongest entrainment; the circumnutation period and the circumnutation shape were less modulated by photoperiod. These findings indicate for the first time that different parameters of circumnutation in sunflower are circadian-regulated rhythms, not solely ultradian as had been thought previously.  相似文献   

8.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757-765, 2000)  相似文献   

9.
(1)
Seasonal variation in thermal preference of Arctic charr from a North Norwegian population (70°N) was studied in an electronic shuttlebox, which allowed the fish to control the water temperature by moving between two chambers. The fish were acclimated to 12 °C and a natural photoperiod before measurements. Fish were tested in autumn (September–October), winter (January–February), spring (April–May) and summer (June–August).  相似文献   

10.
11.
The locomotor activity of the millipede Glyphiulus cavernicolus (Spirostreptida), which occupies the deeper recesses of a cave, was monitored in light-dark (LD) cycles (12h light and 12h darkness), constant darkness (DD), and constant light (LL) conditions. These millipedes live inside the cave and are apparently never exposed to any periodic factors of the environment such as light-dark, temperature, and humidity cycles. The activity of a considerable fraction of these millipedes was found to show circadian rhythm, which entrained to a 12:12 LD cycle with maximum activity during the dark phase of the LD cycle. Under constant darkness (DD), 56.5% of the millipedes (n = 23) showed circadian rhythms, with average free-running period of 25.7h ± 3.3h (mean ± SD, range 22.3h to 35.0h). The remaining 43.5% of the millipedes, however, did not show any clear-cut rhythm. Under DD conditions following an exposure to LD cycles, 66.7% (n = 9) showed faint circadian rhythm, with average free-running period of 24.0h ± 0.8h (mean ± SD, range 22.9h to 25.2h). Under constant light (LL) conditions, only 2 millipedes of 11 showed free-running rhythms, with average period length of 33.3h ± 1.3h. The results suggest that these cave-dwelling millipedes still possess the capacity to measure time and respond to light and dark situations. (Chronobiology International, 17(6), 757–765, 2000)  相似文献   

12.
Rest activity pattern was studied in wild-captured males of Octodon degus (n=9), Octodon bridgesi (n=3), and Spalacopus cyanus (n=6) (Rodentia: Octodontidae). Ten-minute resolution actograms were constructed from data obtained by an automated acquisition system. After two months of habituation to a stable light-dark schedule, recordings were performed in isolation chambers under a 12: 12 Light Dark schedule. A free-running period (constant darkness) was recorded for O. bridgesi and S. cyanus. O. degus displayed a crepuscular pattern of rest activity rhythm. Entrained O. bridgesi and S. cyanus displayed nocturnal preference, with rest anticipating light phase and without crepuscular activity bouts. Under constant darkness, active phase occurred at subjective night in O. bridgesi and S. cyanus. Wild-captured O. bridgesi and S. cyanus possess a circadian driven nocturnal preference, while wild O. degus displays a crepuscular profile. Diurnal active phase preference of wild S. cyanus colonies observed in the field could not be explained solely by photic entrainment, since social and/or masking processes appear to be operative. The genus Octodon includes species with diverse chronotypes. We propose that crepuscular diurnal pattern observed in O. degus is a recent acquisition among the octodontid lineage.  相似文献   

13.
The aim of this study was to evaluate the daily rhythm of locomotor activity in Rhamdia quelen (R. quelen). A total of 30 fish were enrolled in the study and were equally divided in 10 groups and maintained in 100 liters tanks. The locomotor activity was measured in fish maintained under the LD 12:12 photoperiod regime; thereafter, the LD cycle was reversed to DL in order to study the resynchronization and to explore the endogenous pacemaker. Subsequently, the fish were subjected to constant conditions of light to test whether or not locomotor rhythms are regulated by the endogenous circadian clock. The effect of increasing light length and intensity was studied on daily rhythm of locomotor activity of fish. Our results showed that the R. quelen is a strictly diurnal species, the rhythm of locomotory activity resynchronized quickly after inverting the LD cycle and persist under free course LL, suggesting a circadian origin. The light showed a significant masking effect often blocking the expression of the biological rhythm. The strictly diurnal behavior is controlled directly by the photoperiod and maintained even under very dim light (30 lux).  相似文献   

14.
Daily light and temperature cycles entrain adult eclosion rhythms in many insect species, but little is known about their interaction. We studied this problem in the onion fly, Delia antiqua. Pupae were subjected to various combinations of a photoperiod of 12L:12D and thermoperiods. The thermoperiods consisted of 12 h warm phase (W) and 12 h cool phase (C), giving a mean temperature of 25 °C with different temperature steps of 8, 4 and 1 °C. As the phase relation of the two Zeitgebers was varied, the phase of eclosion rhythm was shifted, depending on the phase angle with the light cycle and the amplitude of the temperature cycle. When the temperature step in the thermoperiod was 8 °C (WC 29:21 °C), the eclosion rhythm was entrained mainly to thermoperiod rather than photoperiod. In the regime with a 4 °C temperature step (WC 27:23 °C), both thermoperiod and photoperiod affected eclosion rhythm, and a phase jump of the eclosion rhythm occurred when the warm phase of thermoperiod was delayed 15-18 h from light-on. In regimes with a 1 °C temperature step (WC 25.5:24.5 °C), the eclosion rhythm was completely entrained to photoperiod. The observed interacting effect of light and temperature cycle on the eclosion rhythm in D. antiqua can be explained by the two-oscillator model proposed by Pittendrigh and Bruce (1959).  相似文献   

15.
Changes in ambient temperature produce complex effects on sleep–wakefulness. In order to find out the mechanisms involved in temperature-sensitive changes in sleep in rats, their thermal preference, body temperature and sleep were studied before and after the destruction of both peripheral and central warm receptors, by systemic administration of 375 mg/kg capsaicin. Though the pre-treated rats preferred to stay mostly at the ambient temperature of 27 °C, post-treated rats strayed freely into chambers having ambient temperature of 30 °C and 33 °C. Sleep and body temperature of these rats were studied for six hours each, when they were kept at an ambient temperature of 18–36 °C. Total sleep time, especially REM sleep, was maximum at 30 °C in pre-treated rats, but this REM sleep peak at 30 °C disappeared after capsaicin administration. Body temperature increased sharply in post-treated rats, at ambient temperatures above 30 °C. Apart from the ability to defend body temperature at high ambient temperature, avoidance of warm ambient temperature and increase in REM sleep are the behavioral measures which are lost in post-treated rats. Results of this study suggest that the ambient temperature-related increase in REM sleep at 30 °C could be part of the thermoregulatory measures.  相似文献   

16.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

17.
We studied the demand‐feeding behaviour was studied of gilthead seabream (Sparus aurata, L.) reared under either constant (25 ± 0.5°C, 12 : 12 L : D, control group) or natural (experimental group) temperature and photoperiod conditions during a period from winter to summer. Hourly demand‐feeding activity profiles were recorded using self‐feeding devices; these profiles showed that control group behaved entirely as a diurnal species, exhibiting no nightly activity and decreased demand rates in winter months. The experimental group did exhibit nightly activity (in incomplete darkness); this group also showed reduced demand rates in winter months, accompanied by a demand peak shift towards evening/night hours that followed the day's temperature peak of colder months.  相似文献   

18.
Marine and estuarine crabs brood attached eggs, which hatch synchronously releasing larvae at precise times relative to environmental cycles. The subtidal crab Dyspanopeus sayi has a circadian rhythm, in which larvae are released within the 4-h interval after the time of ambient sunset. Previous studies demonstrated that the rhythm can be entrained by the light:dark cycle. Since subtidal crabs are also exposed to temperature fluctuations, an unstudied question was whether the circadian rhythm could be entrained by the diel temperature cycle. To answer this question, ovigerous D. sayi were entrained in darkness to 2.5, 5, and 10 °C temperature cycles that were reverse in phase from the ambient temperature cycle. After entrainment, larval release times were monitored in constant conditions of temperature and darkness with a time-lapse video system. The effectiveness of a temperature cycle to shift the timing of larval release increased as the magnitude of the temperature cycle increased and as crabs were exposed to increasing numbers of entrainment cycles. However, entrainment to a 10 °C cycle only lasted 2 days in constant conditions. When crabs were entrained to a light:dark vs. a 10 °C temperature cycle, the light:dark cycle was dominant for entrainment. Nevertheless, ovigerous crabs do sense temperature cycles and in areas where daylight is too low for entrainment, temperature cycles can be used to regulate the time of larval release.  相似文献   

19.
Diurnal variations in the concentrations of major organic compounds occurred in xylem fluid extracted from Lagerstroemia indica L. The concentration of amino acids and the N/C ratio was at a maximum and that of organic acids was at a minimum between 1230 and 2030 h. Since the concentrations of total organic nitrogen, total amino acids and most individual amino acids (but not organic acids or sugars) were also proportional to xylem tension two experiments were performed to discern whether variations in chemistry were a consequence of diurnal changes in moisture stress. In the first experiment, L. indica , exposed to variable levels of moisture stress during midday, manifested an increase in organic acids and a reduction in the N/C ratio. In the second experiment, chemical profiles of xylem fluid were collected and compared for plants exposed to a natural photoperiod, constant darkness or continuous light at noon and midnight. After 1 day amino acids increased in concentration during midday for all treatments; the variation was greatest (10-fold) for plants in constant darkness where xylem tension varied from 0.20 to 0.25 MPa. Only plants exposed to continuous light lost a diurnal rhythm after 3 days. Thus, the circadian rhythm was endogenous, terminated in continuous light and was not mediated by changes in moisture stress. Glutamine accounted for most of the diurnal variation in total amino acids, organic nitrogen and the N/C ratio in xylem fluid.  相似文献   

20.
Abstract

The Locomotory activity of the Plains Garter snake was determined under L/D: 12/12 conditions at five constant temperatures and three light intensities during the light period. The snakes were diurnal at low temperatures with nocturnal activity increasing in various amounts at higher temperatures. The different light intensities had relatively small effects on the activity rhythm.

Activity was recorded under four constant light conditions at five constant temperatures and the characteristics of the free‐running rhythm measured. A comparison of the characteristics of the free‐running rhythm to Aschoff's circadian rule indicates that this snake is an exception to this rule.

Increase light intensity decreased total activity under all conditions. Under a L/D: 12/12 cycle the decrease in activity was more pronounced during the dark period than the light period.

It is suggested that crepuscular or nocturnal activity shown by snakes at high temperatures may be an effect the temperature level has on the biological clock and activity controlling mechanisms rather than temperature selection by the snake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号