首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the effects of acute exercise on IL-17 concentrations in hot and neutral environments in trained males. Ten trained, non-heat acclimated males performed two 1 h run on treadmill at 60% VO2max in neutral (22±1 °C, 50±5RH) and hot (35±1 °C, 50±5) temperature conditions. Samples of the venous blood were taken (Pre, post, 2 h post) for determination of serum IL-17, cortisol concentrations and numbers of leukocytes and neutrophils. In addition, body temperature, RPE and PVC during exercise were measured. The collected data were analyzed using the Repeated-Measures analyses of variance and Bonferroni post hoc and Paird T tests (p<0.05). The concentration of cortisol and total number of leukocytes increased significantly after exercise, in both conditions (p<0.0001) and were significantly higher in hot than neutral (p=0.016, p=0.002). During the rest period (2 h post) the number of neutrophils increased significantly in hot environment (p=0.018). The concentrations of IL-17 increased significantly only after exercise in hot (p<0.0001) and were significantly higher during hot than neutral (p=0.002). The results suggest that exercise in hot environment cause increase in body temperature, perceived exertion and cardiac-vascular changes which are sufficient to elicit immune, hormonal and inflammatory responses. The present results confirm the additive effect of heat stress on the IL-17 response during exercise.  相似文献   

2.
The purpose of this study was to investigate ethnic differences in cutaneous thermal sensation thresholds and the inter-threshold sensory zone between tropical (Malaysians) and temperate natives (Japanese). The results showed that (1) Malaysian males perceived warmth on the forehead at a higher skin temperature (Tsk) than Japanese males (p<0.05), whereas cool sensations on the hand and foot were perceived at a lower Tsk in Malaysians (p<0.05); (2) Overall, the sensitivity to detect warmth was greater in Japanese than in Malaysian males; (3) The most thermally sensitive body region of Japanese was the forehead for both warming and cooling, while the regional thermal sensitivity of Malaysians had a smaller differential than that of Japanese; (4) The ethnic difference in the inter-threshold sensory zone was particularly noticeable on the forehead (1.9±1.2 C for Japanese, 3.2±1.6 °C for Malaysians, p<0.05). In conclusion, tropical natives had a tendency to perceive warmth at a higher Tsk and slower at an identical speed of warming, and had a wider range of the inter-threshold sensory zone than temperate natives.  相似文献   

3.
Spaceflight and its bed rest analog impair thermoregulatory responses, including elevated core temperature observed at rest and during exercise. Natural air flow has been found to increase cold sensation significantly compared to artificial constant air flow (CAF). The present study tested the hypothesis that simulated natural air flow (SNAF) ventilation would ameliorate impaired thermoregulatory function to a greater extent than CAF under simulated microgravity conditions. Seven healthy males underwent 30 days of −6° head-down bed rest (HDBR). During pre-HDBR and the day 29 of HDBR (HDBR 29), the subjects were exposed to three air flow patterns at 23 °C while in a supine posture: a still air flow control (CON), CAF, and SNAF. The mean air velocity of the latter two patterns was 0.2 m/s. Subjective perception of the thermal environment was recorded by thermal sensation vote (TSV), and rectal temperature (Tre), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were also measured during the sessions. Tre was significantly elevated after 29 days of HDBR and decreased to a greater extent in SNAF than in CAF on HDBR 29. However, there was no significant difference between Tre in SNAF on HDBR 29 and that in CON on pre-HDBR. Mean Tsk, CVC, and TSV in SNAF were also significantly lower than those in CAF on HDBR 29. Moreover, TSV was close to ‘neutral’ under SNAF on HDBR 29. These data indicate that simulated natural air movement might be more effective than constant air movement at preserving core temperature at a thermoneutral ambient temperature during HDBR.  相似文献   

4.
Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.  相似文献   

5.

1. 1. The purpose of this study was to investigate the effects of thermal radiation and wind on thermal responses at rest and during exercise in a cold environment.

2. 2. The experimental conditions were radiation and wind (R + W), no radiation and wind (W), radiation and no wind (R), no radiation and no wind (C).

3. 3. The air temperature was −5°C. Thermal radiation was 360 W/m2. Air velocities were 0.76, 1.73 and 2.8 m/s. Rectal and skin temperatures, heart rate and oxygen consumption were recorded. Thermal and comfort sensations were questioned.

4. 4. There are no significant effects of thermal radiation and wind on the physiological responses except the mean skin temperature. There are significant effects on the mean skin temperature (P < 0.01) and thermal sensation (P < 0.05).

Author Keywords: Thermal responses; wind; thermal radiation; exercise; cold environment  相似文献   


6.
The development of thermophysiological responses during four consecutive exercise/rest sessions in the cold was studied in men wearing chemical protective clothing and a face mask. Six men repeated four exercise/rest sessions during 8 h at –10°C. Each session consisted of step exercise (240 W · m−2) for 60 min and rest for another 60 min. Rectal and skin temperatures were measured continuously and thermal sensations were obtained at 30-min intervals. Entering the cold from a warm environment and the onset of exercise resulted in a decrease in skin temperatures during the first session and the decrement in the temperatures of the extremities continued for 10–20 min during the following period of exercise. Torso skin temperature was at its lowest during the first rest period. After the first session of cold exposure the range and the level of variation in mean body temperature ( b) followed a pattern which was repeated until the end of the experiment. However, the torso skin temperatures increased gradually until the fourth session, while the temperatures of the extremities, in contrast, tended to decrease up to the third session. In conclusion, the present results indicated that although b, reflecting the whole body heat balance, showed a typical pattern of change after the first session (2 h), the torso area was warming until the end of the cold exposure while the extremities continued to cool down up to the third session (6 h), obviously due to a prolonged redistribution of the circulation. Accepted: 29 May 1998  相似文献   

7.
This study investigated the effect on thermal perception and thermophysiological variables of controlled metabolic excursions of various intensities and durations. Twenty-four subjects were alternately seated on a chair or exercised by walking on a treadmill at a temperature predicted to be neutral at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise or decline immediately (within 1 min) after a change of activity, which means that even moderate activity changes of short duration affect thermal perceptions of humans. After approximately 15–20 min under constant activity, subjective thermal responses approximated the steady-state response. The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10–5 min 25% and during the prior 20–10 min 10%.  相似文献   

8.
Summary To examine the effects of acute branched-chain-amino acids (BCAA) oral administration following chronic BCAA intake, a group of well trained young swimmers (n = 12) was submitted to a one month chronic BCAA treatment (0.2g/Kg body weight per die; Leu: Val: Ileu = 2:1:1) and a physical exercise test before and after this period of treatment was carried out. The exercise tests (60min swim) were performed in a high circulating BCAA level state which was obtained through oral BCAA administration (or placebo) just before the beginning of the exercise. The groups will be referred to as BCAA/before, BCAA/after, placebo/before, placebo/after. Blood and plasma (antecubital vein) samples were collected from the different groups at different times: on the morning of the day before the test (basal time, rest 0), the following day 30min after an acute administration (oral dose placebo or BCAA acute treatment: Leu 4.8g, Val 2.4g, Ileu 2.4g), just before the beginning of the exercise performance (time 0min, rest 1), at the end of the exercise (time 60min, EE) and during recovery (time 120min, Re). Plasma ammonia levels increased significantly from rest 1 to the end of the exercise in all subjects, but it was significantly higher in BCAA treated than in placebo subjects in both the before and after chronic treatment groups (BCAA/before: from 38 ± 7 to 204 ± 65mmol/l; placebo/before: from 36 ± 10 to 93 ± 29mmol/l; BCAA/after: from 36 ± 9 to 171 ± 43mmol/l; placebo/after: from 30 ± 6 to 65 ± 16mmol/l). Plasma ammonia level increments observed before a chronic one month BCAA treatment were significantly higher than after this treatment (p < 0.05). Plasma alanine was at all times of the test higher before the BCAA chronic treatment than after; this difference resulted significant at rest 0, rest 1 and recovery times (p < 0.05). After acute BCAA administration, plasma BCAA levels increased from 618 ± 52mmol/l to 1893 ± 284mmol/l (p < 0.05) from the onset of exercise and remained elevated throughout the test. Placebo and basal (rest 0) levels both before and after the chronic treatment did not demonstrate any significant differences. Plasma BCAA and BCKA levels, in the BCAA/before demonstrated significantly higher levels than placebo/before at rest 1 time (BCAA/before vs placebo/before: Leu 86 ± 27 vs 620 ± 97mmol/l; KIC 60 ± 3 vs 87 ± 5mmol/l, Ileu 51 ± 19 vs 359 ± 56mmol/l, KMV 26 ± 1 vs 43 ± 2mmol/l, Val 290 ± 79 vs 915 ± 133mmol/l, KIV 14 ± 1 vs 24 ± 2mmol/l). The levels after the chronic treatment maintained circa these differences in the two groups BCAA/after and placebo/after. The plasma BCAA as well as the BCKA levels of acutely treated athletes, in physical exercise, showed a different profile before and after the chronic treatment. The chronic treated BCAA/after group in fact depicted a decreasing BCKA level profile at the end of the exercise and during recovery; on the contrary, before the chronic treatments, acutely treated athletes demonstrated a tendency to increase these levels during recovery. These data seem to confirm that increased BCAA availability, before exercise, result in significantly greater plasma ammonia responses during exercise than does placebo administration; furthermore this increment is lower after chronic treatment. The interpretation of the ammonia data is difficult since the exercise type could have an influence on this phenomenon. The differences in the profile patterns of alanine, BCAA and BCKA levels seem to indicate that the chronic treatment brings about a state in which there is a better use of BCAA compounds as energy supply.Name and location where the investigations were carried out.  相似文献   

9.
We compared the accuracy of an ingestible telemetry pill method of core temperature (Tc) measurement and an infrared tympanic membrane thermometer to values from a rectal thermistor during exercise-induced heat stress. Ten well-trained subjects completed four exercise trials consisting of 40 min constant-load exercise at 63% of maximum work rate followed by a 16.1 km time trial at 30 °C and 70% relative humidity. Temperature at rest was not different between the three methods of Tc measurement (Tre: 37.2±0.3 °C; Tp: 37.2±0.2 °C; Tty: 37.1±0.3 °C; P=0.40P=0.40). Temperature rose continuously during the exercise period (ΔTre: 2.2±0.5 °C; ΔTp: 2.2±0.5 °C; ΔTty: 1.9±0.5 ±°C and there were no differences between Tre and Tp measurements at any time throughout exercise (P=0.32P=0.32). While there were no differences between Tre and Tty after 10 min (P=0.11P=0.11) and 20 min (P=0.06P=0.06) of exercise, Tty was lower than Tre after 30 min of exercise (P<0.01P<0.01) and remained significantly lower throughout the remainder of the exercise period. These results demonstrate that the telemetry pill system provides a valid measurement of trunk temperature during rest and exercise-induced thermal strain. Tty was significantly lower than Tre when temperature exceeded 37.5 °C. However, whether these differences are due to selective brain cooling or imperfections in the tympanic membrane thermometer methodology remains to be determined.  相似文献   

10.
The combined thermal load created by exercise and a hot environment is associated with an exaggerated core temperature response. The elevated core temperature is believed to increase the total stress of the exercise. Increased stress during exercise has been associated with increased levels of cortisol. The association of cortisol with increased inflammatory responses following exercise in the heat is equivocal. Thus, the purpose of the current investigation was to explore the relationship between increases in rectal temperature (Tre) and TNFα and cortisol. To induce Tre changes, 8 male subjects (mean±SD, age=23.6±2 yr, VO2max=52.8±3.7 mL/kg/min, BMI=24.2±1.9) participated in two 40 min trials of cycle ergometry at 65% of VO2peak immersed to chest level in cool (25 °C) and warm (38.5 °C) water. Tre was monitored throughout each trial, with blood samples taken immediately pre and post of each trial. Neither cortisol nor TNFα changed significantly during exercise in the cool water; however, in the warm trial, both cortisol and TNFα significantly increased (p<0.004). Concordance correlations (Rc) between Δ cortisol and Δ TNFα indicated a strong but non-significant correlation (Rc=0.833, p=0.135). In conclusion, changes in core temperature may be impacting the relationship between exercise induced changes in cortisol and TNFα. Therefore, acute moderate-intensity exercise (40 min or less) in warm water impacts the stress and inflammatory response. Understanding this is important because exercise load may need to be adjusted in warm and hot environments to avoid the negative effects of elevated stress and inflammation response.  相似文献   

11.
The relationship between local thermal comfort, local skin wettedness (wlocal) and local galvanic skin conductance (GSC) in four body segments during two different exercise intensities was compared in 10 males. In a balanced order, participants walked at 35% VO2max for 45 min (WALK) (29.0±1.9°C, 29.8±3.6% RH, no wind) in one test and in a separate test ran at 70% VO2max for 45 min (RUN) (26.2±2.1°C, 31.1±7.0% RH, no wind). During both tests, participants wore a loose fitting 100% polyester long sleeve top and trouser ensemble with a low resistance to heat and vapour transfer (total thermal resistance of 0.154 m2 K W−1 and total water vapour resistance of 35.9 m2 Pa W−1). wlocal, change from baseline in GSC (ΔGSC) and local thermal comfort were recorded every 5 min. The results suggest that both wlocal and ΔGSC are strong predictors of thermal comfort during the WALK when sweat production is low and thermal discomfort minimal (r2>0.78 and r2>0.71, respectively). Interestingly, during the RUN wlocal plateaued at ~0.6 to 0.8 due to the high sweat production, whilst ΔGSC gradually increased throughout the experiment. ΔGSC had a similar relationship with thermal comfort to wlocal during the RUN (r2>0.95 and r2>0.94, respectively). Despite the strength of these relationships, the ability of wlocal to predict local thermal comfort accurately dramatically reduces in the exponential part of the curve. In a situation of uncompensated heat stress such as high metabolic rate in hot climate, where sweat production is high, ΔGSC shows to be a better predictor of local thermal comfort than wlocal. The wlocal data shows regional differences in the threshold which triggers local discomfort during the WALK than RUN; lower values are found for upper arms (0.22±0.03 and 0.28 ±0.22) and upper legs (0.22±0.11 and 0.22±0.10), higher values for upper back (0.30±0.12 and 0.36 ±0.10) and chest (0.27±0.10 and 0.39 ±0.32), respectively. However, no regional differences in the threshold of discomfort are found in the ?GSC data. Instead, the data suggests that the degree of discomfort experienced appears to be related to the amount of sweat within and around the skin (as indirectly measured by ΔGSC) at each body site.  相似文献   

12.
The aim of this study was to investigate if voluntary activation and force variability during maximal voluntary contraction (MVC) depends more on muscle (local) or body (core) temperature. Ten volunteers performed a 2-min MVC of the knee extensors under the control (CON) conditions (ambient temperature (21 °C), relative humidity (30%), and air velocity (∼0.1 m/s)) as well as after heating (HT) and cooling (CL) of the lower body. During water manipulation procedure lower body was immersed up to the waist in a water bath at ∼44 °C for 45 min for HT experiment, and ∼15 °C for 30 min for CL experiment. Peak torque, torque variability, muscle voluntary activation and half-relaxation time were assessed during the exercise. HT increased muscle (2.8±0.2 °C) and rectal (1.9±0.1 °C) temperatures while CL lowered muscle (2.2±0.2 °C) temperature, but did not affect rectal temperature. During 2-min MVC, peak torque decreased (P<0.05; SP>90%) and to a lower level in HT compared to CON and CL experiments (52.6±2.3% versus 69.0±2.3% and 65.6±1.9% MVC, respectively, P<0.05; SP>90%). Torque variability increased significantly during exercise and was significantly larger in HT and lower in CL compared to CON experiment. Voluntary activation of exercising muscle was more depressed in HT (i.e. greater central fatigue) and the smallest effect was found in CL compared to CON. In conclusion increased core and muscle temperature impairs voluntary activation and increases force variability of the exercising muscles while a local muscle cooling decrease force variability but has a small effect on central fatigue.  相似文献   

13.
Eothenomys miletus is an important species inhabiting Hengduan mountains region. In order to study adaptive strategy and the role of serum leptin level in response to a 49 d cold exposure, body mass, energy intake, basal metabolic rate (BMR), nonshivering thermogenesis (NST) in E. miletus were measured. During cold exposure (5±1 oC), body mass decreased; serum leptin levels decreased significantly and were positively correlated with body mass and fat mass; energy intake, BMR and NST were higher at 5 °C than that of controls. These results suggest that E. miletus enhanced thermogenic capacity and increased maintenance cost during cold acclimation, resulting in increased energy intake. Serum leptin participated in the regulation of energy balance and body mass in E. miletus.  相似文献   

14.
The main objective of this study was to determine the central mechanisms involved in suppression of thermal sweating after seasonal acclimatization (SA) during passive heating (immersing the legs in 43 °C hot water for 30 min). Testing was performed in July (before-SA) and August (after-SA) [25.2±2.2 °C, 73.9±10.3% relative humidity (RH), Cheonan (Chungnam,126° 52′N, 33.38′E), in the Republic of Korea. All experiments were carried out in an automated climatic chamber (25.0±0.5 °C and RH 60.0±3.00%). Twelve healthy men (height, 174.6±5.40 cm; weight, 65.4±5.71 kg; age, 22.7±2.90 yr) participated. The local sweat onset time was delayed in the after-SA compared to that in the before-SA (p<0.001). The local sweat rate and whole body sweat loss volume decreased in the after-SA compared to those in the before-SA (p<0.001). In addition, evaporative loss volume decreased significantly in the after-SA compared to that in the before-SA [chest, upper-back, thigh and forearm (p<0.001)]. Changes in tympanic temperature and mean body temperature were significantly lower (p<0.05) and the basal metabolic rate decreased significantly in the after-SA compared to those in the before-SA (p<0.001). These results suggest that maintenance of a lower body temperature and basal metabolic rate can occur and blunt the central sudomotor mechanisms following seasonal acclimatization, which suppresses sweating sensitivity.  相似文献   

15.
The affect of negative thermal stress on hematological variables at rest, and during submaximal (sub ex) and maximal exercise (max ex) were observed for young males who volunteered in two experimental sessions, performed in cold (0°C) and in normal room temperature (20°C). At rest, hematological variables such as RBC and derivates Hb and Hct were significantly increased (P<0.05) during cold stress exposure, while plasma volume decreased. The findings of this study suggest that the major factor inducing hypovolemia during low thermal stress can be imputed to local plasma water-shift mechanisms and especially to a transient shift of plasma water from intrato extravascular compartments. Rest values for WBC and platelets (Pla) were also slightly increased during cold stress exposure. However this increase can partly be related to hemoconcentration but also to the cold induced hyperventilation activating the lung circulation. Maximal exhaustive exercise induced, in both experimental temperatures, significant (P<0.05) increments of RBC, Hb, Hct, and WBC while plasma volume decreased. However, Pla increase was less marked. On the other hand, cold stress raised slightly the observed variations of the different hematological variables. Submaximal exercise induced a similar, though non-significant, pattern for the different hematological variables in both experimental conditions. Observed plasma volume ( PV%) reduction appears during exercise. However cold stress induced resting plasma volume variations that are transferred at every exercise level. Neither exercise nor cold inducement significantly modified the hematological indices (MCH, MCV, MCHC). In conclusion hematological variables are affected by cold stress exposure, even when subjects perform a physical activity.  相似文献   

16.
We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9) who were acclimatized to cold conditions, and inline skaters (n=10) who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% V.O2max) in cold (ambient temperature: 5±1°C, relative humidity: 41±9%) and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%). Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05). The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration.  相似文献   

17.
18.
The longstanding question of whether temperature is sensed via separate sensory systems for warmth and cold was investigated by measuring individual differences in perception of nonpainful heating and cooling. Sixty-two subjects gave separate ratings of the intensity of thermal sensations (warmth, cold) and nociceptive sensations (burning/stinging/pricking) produced by cooling (29 degrees C) or heating (37 degrees C) local regions of the forearm. Stimuli were delivered via a 4 x 4 array of 8 mm x 8 mm Peltier thermoelectric modules that enabled test temperatures to be presented sequentially to individual modules or simultaneously to the full array. Stimulation of the full array showed that perception of warmth and cold were highly correlated (Pearson r = 0.83, p < 0.05). Ratings of nonpainful nociceptive sensations produced by the two temperatures were also correlated, but to a lesser degree (r = 0.44), and the associations between nociceptive and thermal sensations (r = 0.35 and 0.22 for 37 and 29 degrees C, respectively) were not significant after correction for multiple statistical tests. Intensity ratings for individual modules indicated that the number of responsive sites out of 16 was a poor predictor of temperature sensations but a significant predictor of nociceptive sensations. The very high correlation between ratings of thermal sensations conflicts with the classical view that warmth and cold are mediated by separate thermal modalities and implies that warm-sensitive and cold-sensitive spinothalamic pathways converge and undergo joint modulation in the central nervous system. Integration of thermal stimulation from the skin and body core within the thermoregulatory system is suggested as the possible source of this convergence.  相似文献   

19.
This study was designed to clarify the effects of cold air exposure on metabolic and hormonal responses during progressive incremental exercise. Eight healthy males volunteered for the study. Informed consent was obtained from every participant. The following protocol was administered to each subject on three occasions in a climatic chamber in which the temperature was 20°, 0° or –20°C with relative humidity at 60%±1%. Exercise tests were conducted on an electrically braked ergocycle, and consisted of a propressive incremental maximal exercise. Respiratory parameters were continuously monitored by an automated open-circuit sampling system Exercise blood lactate (LA), free fatty acids (FFA), glucose levels, bicarbonate concentration (HCO 3 ), acidbase balance, plasma epinephrine (E) and norepinephrine (NE) were determined from venous blood samples obtained through an indwelling brachial catheter. Maximal oxygen uptake was significantly different between conditions: 72.0±5.4 ml kg–1 min–1 at 20°C; 68.9±5.1 ml kg–1 min–1 at 0°C and 68.5±4.6 ml kg–1 min–1 at –20°C. Workload, time to exhaustion, glucose levels and rectal Catecholamines and lactate values were not significantly altered by thermal conditions after maximal exercise but the catecholamines were decreased during rest. Bicarbonate, respiratory quotient, lactate and ventilatory thresholds increased significantly at –20°C. The data support the contention that metabolic and hormonal responses following progressive incremental exercise are altered by cold exposure and they indicate a marked decrease in maximal oxygen uptake, time to exhaustion and workload.This study was supported by grants from CSR, Univesité du Québec; FIR, Université du Québec à Trois-Rivières and NATO no, 86.0435.  相似文献   

20.
Cryopreservation is a well-established technique for long-term storage of viable cells and tissues. However, in recent years, application of established cryobiological principles to the preservation of multicellular tissues and organs has demanded considerable attention to ways of circumventing the deleterious effects of ice and thermal stresses in bulky tissues. As part of a multidisciplinary research program designed to study the interactions of thermo-physical events with tissue preservation, we report here on the implementation of a slow cooling (3 °C/min) and slow warming (62 °C/min) regimen towards scale-up of vitreous preservation of large tissue samples. Specifically, the correlation of thermo-physical events during vitrification of carotid artery segments with function recovery is reported using marginal thermal conditions for achieving vitrification in bulky samples. Moreover, the outcome is compared with a similar study reported previously using a 3-fold higher rate of rewarming (186 ± 13 °C/min). Tissue vitrification using an 8.4 M cryoprotectant cocktail solution (VS55) was achieved in 1 ml samples by imposing a low (2.6 ± 0.1 °C/min) cooling rate, between −40 and −100 °C, and a low rewarming rate (62 ± 4 °C/min) between −100 and −40 °C. Following cryoprotectant removal, the artery segments were cut into 3-4 mm rings for function testing on a contractility apparatus by measuring isometric responses to four agonist and antagonists (norepinephrine, phenylepinephrine, calcium ionophore and sodium nitroprusside). In addition, non-specific metabolic function of the vessel rings was determined using the REDOX indicator alamarBlue. Contractile function, normalized to untreated control samples, in response to the agonists norepinephrine and phenylepinephrine was significantly better in the slowly rewarmed group of carotid segments (74 ± 9% and 62 ± 11%, respectively) than for the more rapidly warmed group 31 ± 7% and 45 ± 15%, respectively). However, EC50 sensitivities were not significantly different between the groups. Thermo-physical events such as ice formation and fractures were monitored throughout the cooling and warming phases using cryomacroscopy with the aid of a purpose-built borescope device. This technique allowed a direct observation of the visual impact of ice formation on specific zones along the blood vessel segment where, in most cases, no ice formation or fractures were observed in the vicinity of the artery segments. However, in specific instances when some ice crystallization was observed to impact the artery segment, the subsequent testing of function revealed a total loss of contractility. The successful vitrification of blood vessel segments using marginal conditions of slow cooling and rewarming, provide essential information for the development of scale-up protocols that is necessary when clinically relevant size samples need to be cryopreserved in an essentially ice-free state. This information can further be integrated into computer simulations of heat transfer and thermo-mechanical stress, where the slowest cooling rate anywhere in the simulated domain must exceed the critical values identified in the current study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号