首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified and characterized multiple forms of biliverdin reductase (BVR) in control rat liver cytosol. Two-dimensional electrophoresis of the purified BVR resolved a minimum of 10 discrete protein zones. All 10 proteins were BVR as judged by immunological cross-reactivity toward rabbit anti-rat BVR. Based on the isoelectric focusing pattern of separation, the BVR variants could be organized into five net-charge groups designated as BVR-IEF1 to BVR-IEF5 and three molecular mass groups designated as BVR-MW1-BVR-MW3, respectively. The pI values of the net-charge groups were: BVR-IEF1, 6.23; IEF2, 5.91; IEF3, 5.76; IEF4, 5.61; IEF5, 5.48. The Mr values of the molecular mass groups were: BVR-MW1, 30,400; MW2, 30,700; MW3, 31,400. Single dimension slab gel isoelectric focusing offered greater resolution of the net charge variants, and BVR-IEF3 was further resolved into two variants, IEF3a and IEF3b, with pIs of 5.77 and 5.75, respectively. The six net-charge variants also resolved on a preparative chromatofocusing column and were designated as BVR-CF1-BVR-CF6. The pH values of the peak fractions were: BVR-CF1, 6.91; CF2, 6.33; CF3, 6.03; CF4, 5.82; CF5, 5.45; CF6, 5.27. Correspondence between the isoelectric focusing net-charge variants and the chromatofocusing net-charge variants was established. The Mr and net-charge variants did not represent partially degraded forms of biliverdin reductase produced during purification since the pattern of resolution of variants on slab gel isoelectric focusing or two-dimensional electrophoresis did not change by purifying the proteins in the presence of protease inhibitors and 5 mM EDTA. BVR-CF2 and BVR-CF4 were purified and examined for pH-dependent cofactor requirements for activity. Both net-charge variants and two pH optima that were cofactor-dependent; maximum activity with NADPH, however, was at pH 8.5 and with NADH at pH 6.7. With both variants, however, a higher catalytic rate was observed with NADH than with NADPH at their respective pH optima. Furthermore, BVR-CF2 exhibited a higher catalytic rate than did BVR-CF4 with either cofactor throughout the pH range of 5-9.  相似文献   

2.
Rat liver biliverdin reductase was purified from control and bromobenzene-treated rats and was designated as C-BVR-T and B-BVR-T, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the existence of two molecular weight variants (30,100 and 29,800) in C-BVR-T but only one form (30,100) in B-BVR-T. Western immunoblotting confirmed that both molecular weight variants were biliverdin reductase. Nondenaturing electrophoresis separated C-BVR-T and B-BVR-T preparations into groups of four variants, designated as BVR ND1 to ND4. However, the C-BVR-T preparation contained three major forms (BVR ND1, ND2, and ND3) while the B-BVR-T preparation contained two major forms (BVR ND2 and ND3). In vitro treatment of biliverdin reductase preparations with either bromobenzene or dithiothreitol did not interconvert the variants of the enzyme. QAE-Sepharose anion-exchange chromatography was used to isolate the ND2 and ND3 variants for physiochemical analysis. The amino acid composition of the variants was rather similar except for their Tyr content. Also, the peptide maps were similar except for a series of moderately early chromatographic peaks. These findings implied secondary modifications to the protein rather than substantial differences in primary structure. The pH-dependent cofactor requirements for enzyme activity were examined. Both variants exhibited 2 pH optima that were cofactor dependent; maximum activity with NADPH and NADH was observed at pH 8.5 and 6.7, respectively. However, both variants exhibited a higher catalytic rate with NADH than with NADPH at their pH optima. Furthermore, BVR ND3 exhibited a higher catalytic rate than BVR ND2 with either cofactor throughout the pH range 6.5-9.  相似文献   

3.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

4.
Isoelectric variants of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) have been reported to exist in various organs including rat liver. To elucidate the biochemical characteristics of the variants, rat liver Cu,Zn-SOD was purified and isolated into eight variants, i.e., pI 5.15, 4.88, 4.80, 4.75, 4.70, 4.65, 4.60, and 4.50. The pI 4.88 variant had the highest specific activity (4245 U/mg protein) and the highest yield (45% of original activity). The descending order of specific activity for the other variants was pI 4.80, 4.75, 5.15, 4.70, 4.65, 4.60, and 4.50. The specific activity correlated well with metal content. The specific activity for most variants was 5-9 times greater when determined at pH 10.0 than at pH 7.8. However, three preparations of pI 4.80 and 4.70 variants had 13.9-16.3 times greater specific activity at pH 10.0 versus 7.8, while one of the pI 4.60 variants was only 3.5 times greater. The rate of Coomasie brilliant blue G-250 binding was lowest with pI 4.88 followed by pIs 4.80 and 4.75. To evaluate the mechanisms which might produce these variants, the pI 4.88 variant was incubated with xanthine-xanthine oxidase or a mixture of rat liver microsome, NADPH, and sodium azide, and a shift to variants pI 4.80 and pI 4.75 was found. The shift was greatly inhibited by the presence of mannitol or by the omitting of azide, respectively. The existence of these variants was also confirmed by other methods: (i) direct application of rat liver 105,000g supernatant to an isoelectric focusing, and (ii) extraction of SOD from acetone powder prepared from rat liver homogenate. Results indicate that several variants most likely arise in tissue as a result of activated oxygen radical modification of variant pI 4.88.  相似文献   

5.
纯牛脾胆绿素还原酶是单一蛋白质,分子量约34 000,等电点约6.2。该酶对胆绿素具有专一性,在还原胆绿素为胆红素中,以还原胆绿素Ⅸ_α最快,Ⅸ_β、Ⅸ_γ和Ⅸ_δ皆很慢。于还原反应中,此酸可以NADH为电子和氢供体,NADPH亦然。然而,NADH依赖性酸与NADPH依赖性酶动力学性质不同:与NADH反应的最适pH7.0,而与HADPH反应时为8.5;两者活性均为过量的胆绿素所抑制,不过,NADPH依赖性酶更敏感。  相似文献   

6.
Cobaltous chloride induced in rat liver an enzyme which converted biliverdin reductase molecular form 1 into the molecular form 3. This conversion involves the oxidation of two sulfhydryl groups of form 1 giving rise to a disulfide bond in form 3. The converting enzyme was isolated from the liver peroxisomal fraction (which was devoid of biliverdin reductase activity), and was absent in liver peroxisomes of control rats. The enzyme was solubilized by treatment of the peroxisomes with 0.1% sodium deoxycholate, and partially purified by DEAE-cellulose and Sephadex G-100 filtration. It is a NAD+ dependent enzyme which was inactivated by trypsing and heat treatments. It did not oxidize either reduced glutathione or cysteine. The converting enzyme had a molecular weight of about 54,000 daltons. The oxidation of biliverdin reductase molecular form 1 mediated by the converting enzyme did not affect the latter's molecular weight or activity.  相似文献   

7.
The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently.  相似文献   

8.
9.
The four major isoelectric forms of human liver neuraminidase (with pI values between 3.4 and 4.8) have been isolated by preparative isoelectric focusing and characterized with regard to their substrate specificity using glycoprotein, glycopeptide, oligosaccharide and ganglioside natural substrates. All forms exhibited a rather broad linkage specificity and were capable of hydrolyzing sialic acid glycosidically linked alpha 2-3, alpha 2-6 and alpha 2-8, although differential rates of hydrolysis of the substrates were found for each form. The most acidic form 1 (pI 3.4) was most active on sialyl-lactose, whereas form 2 (pI 3.9) and 3 (pI 4.4) were most active on the more hydrophobic ganglioside substrates. Form 4 (pI 4.8) was most active on the low-Mr hydrophilic substrates (fetuin glycopeptide, sialyl-lactose). Each form was less active on the glycoprotein fetuin than on a glycopeptide derived from fetuin. Organelle-enriched fractions were prepared from fresh human liver tissue and neuraminidase activity on 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid was recovered in plasma membrane, microsomal, lysosomal and cytosolic preparations. Isoelectric focusing of the neuraminidase activity recovered in each of these preparations resulted in significantly different isoelectric profiles (number, relative amounts and pI values of forms) for each preparation. The differential substrate specificity of the isoelectric forms and the different isoelectric focusing profiles of neuraminidase activity recovered in subcellular-enriched fractions suggest that specific isoelectric forms with broad but defined substrate specificity are enriched at separate sites within the cell.  相似文献   

10.
A specific antibody was prepared against rat liver heme oxygenase which had been induced by bromobenzene treatment. Immunochemical studies with this antibody (IgG) revealed that heme oxygenases from livers of rats treated with hemin, Cd2+, Co2+, or bromobenzene from rat spleen and also from kidney of Sn2+-treated rats were all immunochemically identical. Cell-free synthesis of heme oxygenase was performed in a rabbit reticulocyte lysate system using polysomes isolated from livers of rats treated with either hemin, Cd2+, or bromobenzene, and it was found that translatable mRNA specific for heme oxygenase was actually increased in the liver of rats treated with any of those inducers. Also, the ability of liver polysomes to direct cell-free synthesis of heme oxygenase was apparently proportional to the activity of heme oxygenase in the liver from which polysomes were prepared. The heme oxygenase protein synthesized either in vivo or in vitro showed a molecular weight of 31,000 when examined by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. This value is essentially identical with the molecular weight of heme oxygenase purified from rat liver and indicates that a precursor form of heme oxygenase may not be involved in the heme oxygenase synthesis.  相似文献   

11.
Properties of human tissue isoferritins.   总被引:7,自引:1,他引:6       下载免费PDF全文
1. Human liver ferritin was separated by preparative isoelectric focusing into six fractions. 2. Except for the least acidic fraction the reactivity with antibody against spleen ferritin increased with rising pI, but with antibody against heart ferritin the reactivity decreased. 3. The highest iron content was found in the most acidic isoferritins and progressively decreased with rising pI. 4. Iron uptake was studied in apoferritin prepared from heart and liver ferritin fractions separated by ion-exchange chromatography. There was good correlation between the rate of iron uptake and pI. The most acidic fractions took up iron more rapidly than did the more basic ones. 5. Ferritin was prepared from heart, liver, spleen and kidney. There was little difference on isoelectric focusing between ferritin obtained from normal tissues and the corresponding iron-loaded tissues from patients who had received multiple blood transfusions. The iron-loaked heart ferritin invariably contained relatively more of the basic isoferritins. Normal and iron-overloaded heart ferritins were separated into isoferritin fractions by ion-exchange chromatography, and in each case there was a fall in iron content as the pI increased. The iron content of ferritin from the iron-overloaded heart was higher throughout than that from normal heart. 6. There is a relationship between the rate of iron uptake by apoferritin and pI, and this probably accounts for the variation in iron content of the isoferritins found in human liver and heart.  相似文献   

12.
1. After selective binding of [3H]pargyline to either monoamine oxidase (MAO) A or MAO B in the rat liver, MAO B alone in the rat brain and MAO in carp brain and liver, molecular weight and isoelectric points (pI) of these MAO were determined by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis and isoelectric focusing and results obtained were compared. 2. For all tissues tested, SDS-polyacrylamide gel electrophoresis of [3H]pargyline-bound samples revealed a labelled protein band of an apparent mol. wt of 60,000 da. 3. Estimation of radioactivity of [3H]pargyline bound after isoelectric focusing revealed a single protein band with acidic pI values of about 5.5 for rat brain and liver MAO B. 4. Moreover, the pI values of about 7.5 were obtained for carp brain and liver MAO. This basic value was also found for MAO A in the rat liver MAO A.  相似文献   

13.
Abstract

Biliverdin reductase was purified from cow spleen. The specific activity of the final enzyme preparation was 24.01 u/mg, representing 686-fold purification as measured with NADPH. The yield was 3 grams of enzyme per 100 grams of cow spleen. The purified enzyme was a monomeric protein with an apparent molecular weight of about 34,000 and an isoelectric point of about 6.2. The biliverdin reductase was specific for biliverdin and reduced IXα faster than the biliverdin isomers IXβ, IXr, or IXδ. The purified enzyme could utilize both NADH and NADPH, but the kinectic properties of the NADH-dependent and the NADPH-dependent enzyme activities were different: the time course of the NADPH-dependent reaction displayed a sigmoidal curve, whereas that of the NADH-dependent reaction did not. Km for biliverdin IXα was 4 × 10?4 mM in the NADPH system, while it was 1.5 × 10?3 mM in the NADH system. Both enzyme activities were inhibited by excess biliverdin, but the inhibition of the NADPH-dependent enzyme activity was more pronounced. The pH optimum was 7.0 with NADH, and 6.8 with NADPH.  相似文献   

14.
A major isoenzyme of hepatic androsterone-sulfating sulfotransferase (AD-ST) was purified from adult female rats. The activity was purified 122-fold over that found in the cytosol and showed a single protein band with a subunit molecular mass of 30 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme exhibited four isoelectric variants of subunits on denaturing isoelectrofocusing gels (pI = 5.8, 6.1, 6.7 and 7.2). Rabbit antiserum raised against the enzyme specifically detected AD-ST polypeptide in rat liver cytosol. Immunoblot analysis of liver cytosol from female and male rats at various ages showed good correlation between the levels of AD-ST activity and AD-ST polypeptide. Significant levels of AD-ST activity and polypeptide were detected in senescent male rats, though normal adult male rats have very low levels of AD-ST activity and protein. The relative content of the isoelectric variants of AD-ST were different in liver cytosol of weanling and adult females, indicating that age- and gender-related alterations of hepatic AD-ST activity are primarily determined by the levels of AD-ST polypeptide and the relative amounts of the four isoelectric variants of the enzyme.  相似文献   

15.
α-Galactosidase activity is diminished in the kidney and liver of patients with Fabry's disease. Less than 2% of the normal activity was found in their kidney, while more than 20% of the normal activity was retained in their liver. The residual enzyme in these two organs showed a single component of pI 4.5 with activity toward 4-methylumbelliferyl α-galactoside on isoelectric focusing. This component seemed to correspond to Fr. II of normal liver or kidney. Ceramide trihexosidase activity was observed as a single component in the same fractions as the α-galactosidase activity for the synthetic substrate.In normal liver, 4-methylumbelliferyl α-galactoside hydrolase was separated into four components with pI's of 4.9, 4.5, 4.2 and 3.9 by isoelectric focusing. Fr. II with pI 4.5 differed from Fr. I in its heat stability and inhibition by myoinositol. In spite of some dissimilarities in their properties, the ratios of enzyme activities for ceramide trihexoside and 4-methylumbelliferyl α-galactoside were similar in all the components of both normal liver and kidney.  相似文献   

16.
J C Swanson  J W Suttie 《Biochemistry》1985,24(15):3890-3897
Plasma and hepatic microsomal forms of rat prothrombin have been compared by sodium dodecyl sulfate-polyacrylamide electrophoresis and isoelectric focusing. The major prothrombin species that accumulated in the microsomes of rats treated with warfarin had a molecular weight of 78 500 and a pI in 8 M urea of 6.3-6.5. Plasma prothrombin had a molecular weight of 83 500 and a pI of 5.3-5.7. Microsomes from normal rat liver contain a second pool of precursor with a molecular weight of 83 500, and digestion with the glycosidase Endo H indicated that this form has been processed to contain complex carbohydrates, while the Mr 78 500 form is a high mannose form and is the substrate for the vitamin K dependent carboxylase. Treatment of rats with tunicamycin revealed that glycosylation was not essential for carboxylation or secretion from the liver. Comparison of the aglyco forms of prothrombin and its precursors suggests that the intracellular forms contain a basic, Mr approximately 1500 peptide that is missing from the plasma form of prothrombin.  相似文献   

17.
The glutathione S-transferases that were purified to homogeneity from liver cytosol have overlapping but distinct substrate specificities and different isoelectric points. This report explores the possibility of using preparative electrofocusing to compare the composition of the transferases in liver and kidney cytosol. Hepatic cytosol from adult male Sprague–Dawley rats was resolved by isoelectric focusing on Sephadex columns into five peaks of transferase activity, each with characteristic substrate specificity. The first four peaks of transferase activity (in order of decreasing basicity) are identified as transferases AA, B, A and C respectively, on the basis of substrate specificity, but the fifth peak (pI6.6) does not correspond to a previously described transferase. Isoelectric focusing of renal cytosol resolves only three major peaks of transferase activity, each with narrow substrate specificity. In the kidney, peak 1 (pI9.0) has most of the activity toward 1-chloro-2,4-dinitrobenzene, peak 2 (pI8.5) toward p-nitrobenzyl chloride, and peak 3 (pI7.0) toward trans-4-phenylbut-3-en-2-one. Renal transferase peak 1 (pI9.0) appears to correspond to transferase B on the basis of pI, substrate specificity and antigenicity. Kidney transferase peaks 2 (pI8.5) and 3 (pI7.0) do not correspond to previously described glutathione S-transferases, although kidney transferase peak 3 is similar to the transferase peak 5 from focused hepatic cytosol. Transferases A and C were not found in kidney cytosol, and transferase AA was detected in only one out of six replicates. Thus it is important to recognize the contribution of individual transferases to total transferase activity in that each transferase may be regulated independently.  相似文献   

18.
Thioltransferase was purified 650-fold from rabbit liver by procedures including acid treatment, heat treatment, gel filtration on Sephadex G-50, column chromatography on DEAE-cellulose, isoelectric focusing (pH 3.5-10) and gel filtration on Sephadex G-75. The final enzyme preparation was almost homogeneous in polyacrylamide gel electrophoretic analysis. Only one active peak with an apparent molecular weight (Mr) of 13,000 was detected by gel filtration on Sephadex G-50 and only a single protein band with a molecular weight of 12,400 was detected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric focusing revealed only one enzyme species, having an isoelectric point (pI) of 5.3. The enzyme has an optimum pH about 3.0 with S-sulfocysteine and GSH as substrates. The purified enzyme utilized some disulfides including S-sulfocysteine, alpha-chymotrypsin, trypsin, bovine serum albumin, and insulin as substrates in the presence of GSH. The enzyme does not act as a protein : disulfide isomerase (the activity of which can be measured in terms of reactivation of randomly reoxidized soybean Kunitz trypsin inhibitor). The enzyme activity was inhibited by chloramphenicol, but not by bacitracin. The inhibition by chloramphenicol was non-competitive (apparent K1 of 0.5 mM). Thioltransferase activity was found in the cytosol of various rabbit tissues.  相似文献   

19.
C P Zimmerman  A M Gold 《Biochemistry》1983,22(14):3387-3392
Glycogen branching enzyme was isolated from rabbit liver. The highly purified enzyme shows a monomer molecular weight of 71 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and apparent molecular weights of 93 000 by sucrose density gradient sedimentation and 52 000 by gel-exclusion chromatography on Sephacryl S-300. No glucosamine, mannosamine, galactosamine, or sialic acid was detected in the protein. An amino acid analysis is reported. The spectrum of branching enzyme is that of a simple polypeptide, with A1%280nm = 24.6. Highly purified branching enzyme consists of several closely related active enzyme forms that can be resolved by isoelectric focusing in polyacrylamide gel. The major species of pI 5.7 is flanked by less abundant forms of pI 5.6 and 5.8. Seemingly identical enzyme forms are observed in crude extracts of rabbit liver, skeletal muscle, brain, and heart, although the absolute and relative concentrations vary among the tissues. Branching enzyme apparently does not exhibit tissue-specific isoenzymes.  相似文献   

20.
Glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6), which has been regarded as a cytosolic enzyme, was also found in rat liver mitochondria. The mitochondrial fraction contained about 10-15% of the total glyoxalase II activity in liver. The actual existence of the specific mitochondrial glyoxalase II was verified by showing that all of the activity of the crude mitochondrial pellet was still present in purified mitochondria prepared in a Ficoll gradient. Subfractionation of the mitochondria by digitonin treatment showed that 56% of the activity resided in the mitochondrial matrix and 19% in the intermembrane space. Partial purification of the enzyme (420-fold) was also achieved. Statistically significant differences were found in the substrate specificities of the mitochondrial and the cytosolic glyoxalase II. Electrophoresis and isoelectric focusing of either the crude mitochondrial extract or of the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms with the respective pI values of 8.1, 7.5, 7.0, 6.85 and 6.6. Three of these forms (pI values 7.0-6.6) were exclusively mitochondrial, with no counterpart in the cytosol. The relative molecular mass of the partially purified enzyme, as estimated by Superose 12 gel chromatography, was 21,000. These results give evidence for the presence of mitochondrial glyoxalase II which is different from the cytosolic enzymes in several characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号