首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat treatment of food-processing facilities involves using elevated temperatures (50-60 degrees C for 24-36 h) for management of stored-product insects. Heat treatment is a viable alternative to the fumigant methyl bromide, which is phased out in the United States as of 2005 because of its adverse effects on the stratospheric ozone. Very little is known about responses of the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae), a pest associated with food-processing facilities, to elevated temperatures. Responses of L. serricorne life stages to elevated temperatures were evaluated to identify the most heat-tolerant stage. Exposure of eggs, young larvae, old larvae, and adults during heat treatment of a food-processing facility did not clearly show a life stage to be heat tolerant. In the laboratory, exposure of eggs, young larvae, old larvae, pupae, and adults at fixed times to 46, 50, and 54 degrees C and 22% RH indicated eggs to be the most heat-tolerant stage. Time-mortality responses at each of these three temperatures showed that the time for 99% mortality (LT99) based on egg hatchability and egg-to-adult emergence was not significantly different from one another at each temperature. Egg hatchability alone can be used to determine susceptibility to elevated temperatures between 46 and 54 degrees C. The LT99 based on egg hatchability and egg-to-adult emergence at 46 degrees C was 605 and 598 min, respectively, and it decreased to 190 and 166 min at 50 degrees C and 39 and 38 min at 54 degrees C. An exponential decay equation best described LT99 as a function of temperature for pooled data based on egg hatchability and egg-to-adult emergence. Our results suggest that during structural heat treatments eggs should be used in bioassays for gauging heat treatment effectiveness, because treatments aimed at controlling eggs should be able to control all other L. serricorne life stages.  相似文献   

2.
The root-feeding flea beetle Longitarsus bethae Savini & Escalona, was introduced into South Africa as a candidate biological control agent for the noxious and invasive weed, Lantana camara L. As part of the study to predict the beetles' survival in its new range, the influence of climatic conditions on its egg development and reproductive performance were investigated in the laboratory. The threshold temperature (T degrees) and degree-days (DD) required for egg hatch were determined after exposing the eggs to various constant temperatures (12, 17, 22, 27 and 32 degrees C) in separate growth chambers. The DD required for egg hatch was 178.6, and the temperature threshold required for egg hatch was 11.3 degrees C. Survival of eggs varied from 27 to 56% at 32 and 17 degrees C, respectively, and was optimum between 17 and 25 degrees C. Oviposition was examined under high and low relative humidity (RH) regimes while egg hatch was determined at six RH levels, each maintained in a separate controlled growth chamber set at a constant temperature (25 degrees C). Whilst RH had no influence on oviposition, eggs were highly susceptible to aridity, and continuous exposure to relative humidity below 63% for more than three days was wholly lethal at 25 degrees C. Optimum egg hatch occurred at RH between 85 and 95% for up to 12 days. The effect of day length on oviposition and subsequent egg hatch was investigated under two photoperiod regimes. Neither oviposition nor subsequent egg hatch was influenced by photoperiod. The knowledge obtained will be useful for mass rearing as well as field release programmes for L. bethae.  相似文献   

3.
The effect of nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5 30, 32.5, and 35 degrees C) on the development of the stone leek leafminer, Liriomyza chinensis (Kato), on Japanese bunching onion, Allium fistulosum L., was studied in the laboratory. Developmental times for immature stages were inversely proportional to temperature between 15 and 30 degrees C but increased at 32.5 degrees C. Total developmental times from egg to adult emergence decreased from 69.6 to 17.1 d for temperatures from 15 to 30 degrees C, with pupae requiring more time for development than the combined egg and larva stages. Both linear and nonlinear (Logan equation VI) models provided a reliable fit of development rates versus temperature for all immature stages. The lower developmental thresholds that were estimated from linear regression equations for the egg, first, second, and third instars, total larva, egg-larval, pupa, and total combined immature stages were 12.1, 10.6, 13.6, 8, 9.6, 11.3, 11.2, and 11.4 degrees C, respectively. The degree-day accumulation was calculated as 312.5 DD for development from egg to adult emergence. By fitting the nonlinear models to the data, the upper and optimal temperatures for egg, larva, pupa, and total immature stages were calculated as 37.8 and 31.7, 34.9 and 30.1, 35.8 and 30.6, and 35.0 and 30.9 degrees C, respectively. These data are useful for predicting population dynamics of L. chinensis under field conditions and determining the maximum proportion of susceptible individuals for facilitating improved timing of application of control measures.  相似文献   

4.
Egg and nymphal development were studied under constant temperatures for the newly introduced pest species, Halyomorpha halys (St?l) (Hemiptera: Pentatomidae). Development was assessed at seven constant temperatures (15-35 degrees C). Development to adult was completed at temperatures between 17 and 33 degrees C, with egg hatch also occurring at 15 degrees C. The relationship between temperature and developmental rate was evaluated using three developmental models. Of the models evaluated, the Briere-1 model was the best fit for the empirical data of egg and total development and for providing accurate values for the temperature threshold. Application of the linear degree-day model estimated 537.63 DD are needed for total development (egg to imaginal ecdysis). An additional 147.65 DD are needed for the preoviposition period of the female. Reproductive parameters were evaluated at 25 degrees C and indicate a median number of 28 eggs per egg mass. Oviposition occurred at 4.32-d intervals, and a female can continue to oviposit throughout its lifespan. H. halys is univoltine in New Jersey and Pennsylvania, but if it spreads to warmer climates in the United States, it could have multiple generations per year.  相似文献   

5.
Managing stored-product insect pests by heating the ambient air of a food-processing facility to high temperatures (50-60 degrees C), also referred to as heat treatment, is an effective technology that has been used since the early 1900s. The minimum temperature during heat treatment for effective disinfestation is 50 degrees C. The effect of sublethal exposures to 50 degrees C on the reproductive performance of stored-product insects associated with food-processing facilities is unknown. The red flour beetle, Tribolium castaneum (Herbst), is a pest commonly found in food-processing facilities worldwide. The adverse effects on fecundity, egg-to-adult survival, and progeny production of T. castaneum exposed as 1-d-old pupae and 2-wk-old adults to 50 degrees C for 60 and 39 min, respectively, were determined in the laboratory. Pupae and adults exposed for the same time periods at 28 degrees C served as the control treatment. Four possible reciprocal crosses were carried out among adults from the heat-treated (50 degrees C) and control (28 degrees C) treatments. The number of eggs produced during the first 2 wk of adult life, survival of these eggs to adulthood, and adult progeny production after 2 and 8 wk of oviposition in treatments representing all four reciprocal crosses were determined. Fecundity, egg-to-adult survival, and adult progeny production decreased by 17-63, 52-63, and 66-78%, respectively, when males, females, and both males and females were exposed to 50 degrees C. These effects were relatively more pronounced in treatments in which pupae were exposed to the high temperature compared to adults, and in exposed females than in males. The impaired reproductive performance in T. castaneum pupae and adults surviving sublethal exposures to the minimum heat treatment temperature is valuable for understanding population rebound following a heat treatment intervention.  相似文献   

6.
Thermally dependent development of soybean aphid (Aphis glycines Matsumura) and common buckthorn (Rhamnus cathartica L.) were examined in growth chambers in spring 2005. Models based on ambient air temperatures for all development events were developed. Adjusted models were developed to account for heat units acquired because of solar radiation. These models were tested at field sites in Guelph and Ridgetown, Ontario, Canada. It was found that egg hatch of aphids and bud swell of buckthorn coincided at low temperatures in growth chambers and in the field. Development thresholds of 9 and 10 degrees C were acquired for bud swell and egg hatch, respectively. Models based on ambient air temperatures were poor predictors of bud swell and egg hatch in the field, but models adjusted for solar radiation predicted these events just 1-4 d before they were observed at both sites. The results obtained have broad application for predicting aphid hatch on a regional basis.  相似文献   

7.
The developmental thresholds for Marmara gulosa Guillén & Davis (Lepidoptera: Gracillariidae) were investigated in the laboratory by using 17, 21, 25, 29, and 33 degrees C. The lowest mortality occurred in cohorts exposed to 25 and 29 degrees C. Other temperatures caused >10% mortality primarily in egg and first and second instar sap-feeding larvae. Linear regression analysis approximated the lower developmental threshold at 12.2 degrees C. High mortality and slow developmental rate at 33 degrees C indicate the upper developmental threshold is near this temperature. The degree-day (DD) model indicated that a generation requires an accumulation of 322 DD for development from egg to adult emergence. Average daily temperatures in the San Joaquin Valley could produce up to seven generations of M. gulosa per year. Field studies documented two, five, and three overlapping generations of M. gulosa in walnuts (Juglans regia L.; Juglandaceae), pummelos (Citrus maxima (Burm.) Merr.; Rutaceae), and oranges (Citrus sinensis (L.) Osbeck; Rutaceae), for a total of seven observed peelminer generations. Degree-day units between generations averaged 375 DD for larvae infesting walnut twigs; however, availability of green wood probably affected timing of infestations. Degree-day units between larval generations averaged 322 for pummelos and 309 for oranges, confirming the laboratory estimation. First infestation of citrus occurred in June in pummelo fruit and August in orange fruit when fruit neared 60 mm in diameter. Fruit size and degree-day units could be used as management tools to more precisely time insecticide treatments to target the egg stage and prevent rind damage to citrus. Degree-day units also could be used to more precisely time natural enemy releases to target larval instars that are preferred for oviposition.  相似文献   

8.
Lygus hesperus Knight (Hemiptera: Miridae) is a key pest of fruit and vegetable crops, forages, and cotton (Gossypium spp.) in the western United States. Accurate models describing relationships between temperature and L. hesperus development are critical to the study of seasonal L. hesperus population dynamics. Development of L. hesperus nymphs was assessed at nine constant temperatures from 10 to 37.8 degrees C. The relationships between temperature and development for each L. hesperus instar, and for the entire nymphal stage, were best described by six-parameter biophysical models indicating both low- and high-temperature inhibition of development. Development rates asymptotically approached zero with decreasing temperature in the lower thermal range, and decreased with increasing temperatures above 32.2 degrees C. Nymphs did not survive from egg hatch to adulthood at either 10 or 37.8 degrees C, and nymph mortality was > 90% at both 12.8 and 35.0 degrees C. The fifth instar exhibited the longest stadium, whereas the shortest stadia were associated with the second and third instars. Development rates of males and females did not differ, and the ratio of males to females was not different from 1:1 at any temperature. Our temperature-dependent development rate models for L. hesperus nymphs will facilitate control of insect physiological age in controlled laboratory experiments, and should be useful in planning and interpreting field studies on L. hesperus population dynamics.  相似文献   

9.
《Journal of Asia》2022,25(3):101927
Arma chinensis (Fallou) is a predaceous pentatomid with the potential to control a wide range of insect pests. In this study, the stage-specific temperature-dependent development and survival of A. chinensis was investigated under seven constant temperatures (range 18–35 °C) when fed with yellow mealworm (Tenebrio molitor L.). Developmental times (in days) for the immature stage, entire nymphal stage, and egg-to-adult development were inversely proportional to temperatures between 18 and 33 °C (30 °C for eggs and 1st instar nymphs). The lowest survival rate of A. chinensis was observed at 18 °C (6.7%), whereas it was the highest (80–93.3%) at temperatures ranging from 21 to 24 °C. The low temperature thresholds for the egg, entire nymph stage, and egg-to-adult development were 14.3, 12.28, and 12.8 °C, respectively, while the thermal constants for these stages were estimated to be 85.47, 334.9, and 423.8° days. Among the three non-linear models examined, the Taylor model showed the best fit for the egg data, the Briére1 model was the best fit for the 1st instar nymph stage, and the Lactin1 model was more approprate for all the other instar stages, the entire nymphal stage, and overall development. The upper temperature thresholds estimated using the Lactin1 model for eggs, overall nymphal stage, and egg-to-adult development were 38.57, 38.9, and 40.0 °C. The optimal temperature for the overall egg-to-adult period was estimated to be 33.5 °C. The results of this study can be used for the mass rearing of this natural pest enemy and development of phenology models of its seasonal progress.  相似文献   

10.
Ceratothripoides claratris (Shumsher) is a serious pest attacking tomatoes in Thailand. Temperature-dependent development of C. claratris was studied at seven constant temperatures, i.e. 22, 25, 27, 30, 34, 35 and 40 degrees C. Pre-adult survivorship was greatest (95%) at 25 and 30 degrees C and shortest at 22 degrees C. Egg-to-adult time decreased within the range of 20 to 30 degrees C and at 34 degrees C it started to increase. The lower thermal threshold for egg-to-adult development was estimated at 16 and 18 degrees C by linear regression and the modified Logan model, respectively. The optimum temperature for egg-to-adult development was estimated at 32-33 degrees C by the modified Logan model. The influence of temperature on reproduction and longevity of C. claratris was determined at 25, 30 and 35 and 40 degrees C. Both inseminated and virgin females failed to reproduce at 40 degrees C. Virgin females produced only male offspring, confirming arrhenotoky. The sex ratio of the offspring of fertilized females was strongly female-biased, except at 25 degrees C. Mean total fecundity per female and mean daily total fecundity per female were highest for both virgin and inseminated females at 30 degrees C. Female longevity was longest at 25 degrees C and shortest at 40 degrees C. Male longevity was longest at 30 degrees C and shortest at 40 degrees C. The net reproductive rate (R0) and intrinsic rate of natural increase (rm) was greatest at 30 degrees C while, mean generation time (G) and the doubling time (t) were highest at 25 degrees C. The finite rate of increase (lambda) was fairly constant (1.1-1.5 days) over the three temperatures tested. The pest potential of C. claratris for tropical Asia is discussed.  相似文献   

11.
The objective of the present investigation was to determine the effects of temperature on the granary weevil, Sitophilus granarius L., in the laboratory so that forecasting models based on heat accumulation units could be developed for the pest. Development of S. granarius reared on wheat grains was studied at three constant temperatures (15, 20 and 25?°C) and relative humidity of 70?±?5%. The developmental time was significantly decreased with the increase in temperature. The developmental threshold temperatures estimated for egg, larva, pupa and from egg to adult were 7.79, 7.31, 14.08 and 9.97?°C, respectively. Based on these thresholds, the developmental stages, respectively, needed 92.75, 393.78, 45.04 and 562.36?day degrees to complete their development. Also, about nine generations were calculated for the pest per year under Assiut prevailing conditions. It seems that temperature of 25?°C is the most favourable developmental temperature.  相似文献   

12.
Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures   总被引:1,自引:0,他引:1  
Soybean aphid, Aphis glycines Matsumura, is now widely established in soybean, Glycine max L., production areas of the northern United States and southern Canada and is becoming an important economic pest. Temperature effect on soybean aphid fecundity and survivorship is not well understood. We determined the optimal temperature for soybean aphid growth and reproduction on soybean under controlled conditions. We constructed life tables for soybean aphid at 20, 25, 30, and 35 degrees C with a photoperiod of 16:8 (L:D) h. Population growth rates were greatest at 25 degrees C. As temperature increased, net fecundity, gross fecundity, generation time, and life expectancy decreased. The prereproductive period did not differ between 20 and 30 degrees C; however, at 30 degrees C aphids required more degree-days (base 8.6 degrees C) to develop. Nymphs exposed to 35 degrees C did not complete development, and all individuals died within 11 d. Reproductive periods were significantly different at all temperatures, with aphids reproducing longer and producing more progeny at 20 and 25 degrees C than at 30 or 35 degrees C. Using a modification of the nonlinear Logan model, we estimated upper and optimal developmental thresholds to be 34.9 and 27.8 degrees C, respectively. At 25 degrees C, aphid populations doubled in 1.5 d; at 20 and 30 degrees C, populations doubled in 1.9 d.  相似文献   

13.
The effects of temperature on rates of development of Heterodera glycines egg and juvenile stages were examined as a basis for predicting generation times of the nematode on soybean. The relationship of temperature to H. glycines embryonic development between 15 and 30 C was described by a linear model, The calculated basal temperature threshold was 5 C. Thermal optimum for embryogenesis and hatch with low mortality was 24 C. Development proceeded to first-stage juvenile at 10 C and to second-stage juvenile at 15-30 C. Hatch occurred at 20-30 C. At 36 C, development proceeded to the four-cell stage, then the eggs died. The range of diurnal soil temperature fluctuation and accumulated degree-days between 5 and 30 C (DD5/30) had an impact on rate of development of juveniles in soybean roots. From early June to early July, H. glycines required 534 + 24 DD5/30 (4 weeks) to complete a life cycle in the field. During the midseason (July and August), life cycles were completed in 3 weeks and 429 ± 24 DD5/30 were accumulated. Late in the season (September to November), declining soil temperatures were associated with generation times of 4 weeks and slower rates of development.  相似文献   

14.
The tropical root weevil, Diaprepes abbreviatus (L.), has been a pest of citrus and ornamental plants since its introduction into Lake County, FL, in 1964. Since then, it has colonized the Florida peninsula to the south of its point of introduction but has not expanded its range to the north. A lower threshold for oviposition by D. abbreviatus was estimated as 14.9 degrees C. Eggs were highly susceptible to cold, with 95% mortality (LTime95) occurring in 4.2 d at 12 degrees C. Relative susceptibility of life stages to cold was eggs > pupae > larvae > adults. Archived weather data from Florida were examined to guide a mapping exercise using the lower developmental threshold for larvae (12 degrees C) and the lower threshold for oviposition (15 degrees C) as critical temperatures for mapping the distribution of D. abbreviatus and the potential for establishment of egg parasitoids. Probability maps using the last 10 yr of weather data examined the frequency of at least 10, 15, 20, 25, or 30 d per winter when soil temperature was 相似文献   

15.
Microbial insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) have become increasingly important for pest management. In addition to crystal (Cry) insecticidal protein toxins formed during sporulation, vegetative insecticidal protein (Vip) toxins can be produced during the vegetative phase. Resistance to Cry toxins has been reported in laboratory- and field-selected populations of various Lepidoptera species and several studies have identified fitness costs associated with Cry toxin resistance. Here, fitness costs are examined in the first insect population to be reported with resistance to a Vip toxin, a laboratory-selected Vip3A-resistant subpopulation of the tobacco budworm, Heliothis virescens (L.) (Vip-Sel). The Vip-Sel population showed reduced survival to adult eclosion compared with an unselected subpopulation at all test temperatures, including the culture temperature (25 degrees C). Vip3A resistance was also associated with reduced egg viability and mating success and a lower intrinsic rate of population increase (r(m)) at temperatures below (20 degrees C) and above (30 degrees C) the optimal laboratory culture temperature. The latter findings agree with previous studies, that fitness costs associated with resistance are usually greater under stressful conditions. Such data can help predict the impact of fitness costs on the rate of development of resistance in the field and in the development of resistance management strategies that more fully exploit fitness costs.  相似文献   

16.
The developmental and reproductive biology of a new avocado pest, Scirtothrips perseae Nakahara, was determined in the laboratory at five constant temperatures, 15, 20, 25, 27.5 and 30 degrees C. At 20 degrees C, S. perseae exhibited greatest larval to adult survivorship (41%), and mated females produced a greater proportion of female offspring at this temperature when compared to 15, 25, 27.5 and 30 degrees C. Average lifetime fecundity and preoviposition period was greatest at 15 degrees C at 39.6 eggs per female and 17.6 days, respectively. Jackknifed estimates of net reproduction (Ro), capacity for increase (rc), intrinsic rate of increase (rm), and finite rate of increase (lambda) were all significantly greater at 20 degrees C than corresponding values at 15, 25 and 27.5 degrees C. Population doubling time (Td) was significantly lower at 20 degrees C, indicating S. perseae populations can double 33-71% faster at this temperature in comparison to 15, 25 and 27.5 degrees C. Mean adult longevity decreased with increasing temperature, from a maximum of 52.4 days at 15 degrees C to a minimum of 2.4 days at 30 degrees C. Developmental rates increased linearly with increasing temperatures for eggs and rates were non-linear for development of first and second instar larvae, propupae, pupae, and for egg to adult development. Linear regression and fitting of the modified Logan model to developmental rate data for egg to adult development estimated that 344.8 day degrees were required above a minimum threshold of 6.9 degrees C to complete development. An upper developmental threshold was estimated at 37.6 degrees C with an optimal temperature of 30.5 degrees C for egg to adult development. Unmated females produced only male offspring confirming arrhenotoky in S. perseae.  相似文献   

17.
Early detection of Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) on lettuce is of primary importance for its effective control. Temperature thresholds for development of this pest were estimated using developmental rates [r(T)] at different constant temperatures (8, 12, 16, 20, 24, 26, and 28 degrees C). Observed developmental rates data and temperature were fitted to two linear (Campbell and Mu?iz and Gil) and a nonlinear (Lactin) models. Lower temperature threshold estimated by the Campbell model was 3.6 degrees C for apterous, 4.1 degrees C for alates, and 3.1 degrees C for both aphid adult morphs together. Similar values of the lower temperature threshold were obtained with the Mu?iz and Gil model, for apterous (4.0 degrees C), alates (4.2 degrees C), and both adult morphs together (3.7 degrees C) of N. ribisnigri. Thermal requirements of N. ribisnigri to complete development were estimated by Campbell and Mu?iz and Gil models for apterous in 125 and 129 DD and for both adult morphs together in 143 and 139 DD, respectively. For complete development from birth to adulthood, the alate morph needed 15-18 DD more than the apterous morph. The lower temperature threshold determined by the Lactin model was 5.3 degrees C for alates, 2.3 degrees C for apterous, and 1.9 degrees C for both adult morphs together. The optimal and upper temperature thresholds were 25.2 and 33.6 degrees C, respectively, for the alate morph, 27 and 35.9 degrees C, respectively, for the apterous morph, and 26.1 and 35.3 degrees C, respectively, for the two adult morphs together. The Campbell model provided the best fit to the observed developmental rates data of N. ribisnigri. This information could be incorporated in forecasting models of this pest.  相似文献   

18.
We examined the relationship between the accumulation of thermal energy and the onset of oviposition and eclosion of the northern deer tick, Ixodes scapularis, and explored the usefulness of comparing degree days (DD) required for larval emergence with area-wide National Weather Service (NWS) data to construct maps indicating where the establishment of this vector tick would be climatologically constrained. Initially, the validity of basal temperatures for egg and larval development was confirmed by prolonged incubations of gravid females and eggs at 6 degrees C and 10 degrees C respectively. Next, the number of DD accumulated in situ from the placement of gravid females to oviposition, and from oviposition to larval emergence, were measured using temperature data loggers placed next to fall- and spring-fed ticks held within individual vials under leaf litter in multiple enclosures located in diverse biophysical regions of Maine. Finally, when it was found that total DD to larval emergence, as measured in ambient air above the enclosures, compared favorably with DD accumulated simultaneously at nearby NWS stations, maps were constructed, based on archived NWS data, to demonstrate where temperatures were sufficient to allow the hatching of larvae both within one season and over the last three decades as I. scapularis has advanced into northern New England.  相似文献   

19.
The present work aimed at estimating the thermal requirements for the development and the number of generations per year of Aedes aegypti (L.) under natural conditions. The life cycle of A. aegypti populations was studied at constant temperatures of 18, 22, 26, 30 and 34 degrees C, and 12 h photophase. The development period, egg viability and larval and pupal survival were evaluated daily as well as adult longevity and fecundity. The low threshold temperature of development (Tb) and the thermal constant (K) were determined. The number of generations per year in laboratory and field were also estimated. The favorable temperature to A. aegypti development is between 21 degrees C and 29 degrees C, and to longevity and fecundity is between 22 degrees C and 30 degrees C. The egg to adult basal temperature, thermal constant and the number of generations in field were, in order, 9.5, 8.5, 3.4, 7.1, 13.5 degrees C; 244.5, 273.9, 298.5, 280.9 and 161.8 degree-days; and 21.9, 23.8, 24.2, 21.1 and 22.1 generations in populations from Boqueir?o, Brejo dos Santos, Campina Grande, Itaporanga and Remígio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号