共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaofei Wang Koh Ono Sung Ouk Kim Vladimir Kravchenko Sheng-Cai Lin Jiahuai Han 《EMBO reports》2001,2(7):628-633
We used retrovirus insertion-mediated random mutagenesis and tumor necrosis factor (TNF) selection to generate TNF-resistant lines from L929 cells. The metaxin gene, which encodes a protein located on the outer membrane of mitochondria, was identified to be the gene disrupted in one of the resistant lines. The requirement of metaxin in TNF-induced cell death of L929 was confirmed by the restoration of TNF sensitivity after ectopic reconstitution of metaxin expression. Analysis of the cell death induced by other stimuli revealed that metaxin deficiency-mediated death resistance was selective to certain stimuli. Studies using deletion mutants of metaxin showed that mitochondrial association of metaxin is required for the function of metaxin. Over-expression of truncated metaxin lacking the mitochondria anchoring sequence mimicked metaxin deficiency in wild-type cells. Interfering with metaxin prevented TNF-induced necrotic cell death in L929 cells and apoptosis in MCF-7 cells. Our work has thus defined a novel component in the death pathway used by TNF and some other death stimuli. 相似文献
2.
The role of Ca2+ in cell-mediated cytotoxicity has been the subject of many investigations and both Ca2+-dependent and -independent pathways have been reported. TNF was suggested to play a role in NK and macrophage cell-mediated cytotoxicity. We assumed that its role in target cell lysis might take place by a Ca2+-independent mechanism. This hypothesis was investigated in assays of rTNF-mediated lysis of tumor target cells. Extracellular Ca2+ depletion by the calcium chelator EGTA (2 mM and 5 mM) and blocking of intracellular Ca2+ mobilization by 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride did not inhibit TNF-mediated tumor cell lysis. Furthermore, blocking of Ca2+ influx in the presence of the Ca2+ channel blocker Verapamil did not inhibit TNF-mediated tumor cell lysis. Previous reports showed that lysis of sensitive tumor cells by TNF is preceded by binding of TNF to TNF receptors, internalization, and DNA degradation. These events were tested in the absence of Ca2+. Treatment with Ca2+ inhibitors did not affect binding of 125I-TNF to target cells. Also TNF induced the fragmentation of cellular DNA in target cells without extracellular or intracellular Ca2+. These findings demonstrate that the mechanism of TNF-mediated tumor cell lysis does not depend on intracellular or extracellular Ca2+ and that events associated with target cell lysis can also function in the absence of Ca2+. Thus, our findings support the contention of a Ca2+-independent lytic pathway in which secreted or membrane-bound TNF may interact with the target cells and ultimately result in DNA degradation and target cell lysis. 相似文献
3.
Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), are capable of engendering human epidermal growth factor receptor 2 (Her2) positive tumor cells death. Using a high-performance liquid chromatography (HPLC) system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment. 相似文献
4.
Edelblum KL Goettel JA Koyama T McElroy SJ Yan F Polk DB 《The Journal of biological chemistry》2008,283(43):29485-29494
Tumor necrosis factor (TNF) is a therapeutic target in the treatment of inflammatory bowel disease; however, the exact role of TNF signaling in the colon epithelium remains unclear. We demonstrate that TNF activation of TNF receptor (R)1 stimulates both pro- and anti-apoptotic signaling pathways in the colon epithelium; however, TNFR1 protects against colon epithelial cell apoptosis following TNF exposure. To investigate anti-apoptotic signaling pathways downstream of TNFR1, we generated an intestinal epithelium-specific Raf knock-out mouse and identified Raf kinase as a key regulator of colon epithelial cell survival in response to TNF. Surprisingly, Raf promotes NF-kappaB p65 phosphorylation, independent of MEK signaling, to support cell survival. Taken together, these data demonstrate a novel pathway in which Raf promotes colon epithelial cell survival through NF-kappaB downstream of TNFR1 activation. Thus, further understanding of colon epithelial cell-specific TNFR signaling may result in the identification of new targets for inflammatory bowel disease treatment and define novel mediators of colitis-associated cancer. 相似文献
5.
Complexes of human papillomavirus type 16 E6 proteins form pseudo-death-inducing signaling complex structures during tumor necrosis factor-mediated apoptosis
下载免费PDF全文

Filippova M Filippov VA Kagoda M Garnett T Fodor N Duerksen-Hughes PJ 《Journal of virology》2009,83(1):210-227
High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins. 相似文献
6.
Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death 总被引:1,自引:0,他引:1
下载免费PDF全文

Sedger LM Osvath SR Xu XM Li G Chan FK Barrett JW McFadden G 《Journal of virology》2006,80(18):9300-9309
The poxvirus tumor necrosis factor receptor (TNFR) homologue T2 has immunomodulatory properties; secreted myxoma virus T2 (M-T2) protein binds and inhibits rabbit TNF-alpha, while intracellular M-T2 blocks virus-induced lymphocyte apoptosis. Here, we define the antiapoptotic function as inhibition of TNFR-mediated death via a highly conserved viral preligand assembly domain (vPLAD). Jurkat cell lines constitutively expressing M-T2 were generated and shown to be resistant to UV irradiation-, etoposide-, and cycloheximide-induced death. These cells were also resistant to human TNF-alpha, but M-T2 expression did not alter surface expression levels of TNFRs. Previous studies indicated that T2's antiapoptotic function was conferred by the N-terminal region of the protein, and further examination of this region revealed a highly conserved N-terminal vPLAD, which is present in all poxvirus T2-like molecules. In cellular TNFRs and TNF-alpha-related apoptosis-inducing ligand (TRAIL) receptors (TRAILRs), PLAD controls receptor signaling competency prior to ligand binding. Here, we show that M-T2 potently inhibits TNFR1-induced death in a manner requiring the M-T2 vPLAD. Furthermore, we demonstrate that M-T2 physically associates with and colocalizes with human TNFRs but does not prevent human TNF-alpha binding to cellular receptors. Thus, M-T2 vPLAD is a species-nonspecific dominant-negative inhibitor of cellular TNFR1 function. Given that the PLAD is conserved in all known poxvirus T2-like molecules, we predict that it plays an important function in each of these proteins. Moreover, that the vPLAD confers an important antiapoptotic function confirms this domain as a potential target in the development of the next generation of TNF-alpha/TNFR therapeutics. 相似文献
7.
8.
Inhibition by glucocorticoids of tumor necrosis factor-mediated cytotoxicity. Evidence against lipocortin involvement 总被引:3,自引:0,他引:3
The role of the phospholipase inhibitor proteins, lipocortin-I and -II, in tumor necrosis factor (TNF)-mediated cytotoxicity against L929 fibrosarcoma cells was investigated. We previously reported that TNF-mediated cytotoxicity was inhibited by dexamethasone (DEX), suggesting an involvement of lipocortins. Now we show that, despite inhibition by DEX of TNF-induced arachidonic acid release, DEX has no effect on the synthesis of these lipocortins. Moreover, TNF itself has no effect on the synthesis and phosphorylation of lipocortin-I and -II. Also there was no difference in expression levels of lipocortin-I and -II between TNF-sensitive and -resistant cells. These data strongly suggest that the protective effect of DEX and other glucocorticoids is not mediated by lipocortins. 相似文献
9.
Growth inhibitors present in various kinds of sera were surveyed using the rat liver epithelial cell line BRL and its tumorigenic transformant RSV-BRL as indicator cells. This survey revealed that normal rabbit serum contained two types of growth inhibitors: one (GI-A) was more growth-inhibitory on RSV-BRL than BRL, whereas the other (GI-B) vice versa. GI-A was purified 3,000-fold to show a major protein band with Mr 70k on SDS-PAGE. It was an acid-and heat-labile protein and potently inhibited the growth of three kinds of transformed cell lines and two human carcinoma cell lines, but hardly that of non-transformed cell lines, at a dose of 0.5-1.0 micrograms/ml. On the other hand, GI-B was an acid- and heat-stable protein with Mr 25k and was considered to belong to the TGF-beta family. 相似文献
10.
Betanodavirus protein alpha induces cell apoptosis or secondary necrosis by a poorly understood process. In the present work, red spotted grouper nervous necrosis virus (RGNNV) RNA 2 was cloned and transfected into tissue culture cells (GF-1) which then underwent apoptosis or post-apoptotic necrosis. In the early apoptotic stage, progressive phosphatidylserine externalization was evident at 24h post-transfection (p.t.) by Annexin V-FLUOS staining. TUNEL assay revealed apoptotic cells at 24-72 h p.t, after which post-apoptotic necrotic cells were identified by acridine orange/ethidium bromide dual dye staining from 48 to 72 h p.t. Protein alpha induced progressive loss of mitochondrial membrane potential (MMP) which was detected in RNA2-transfected GF-1 cells at 24, 48, and 72 h p.t., which correlated with cytochrome c release, especially at 72 h p.t. To assess the effect of zfBcl-xL on cell death, RNA2-transfected cells were co-transfected with zfBcl-x(L). Co-transfection of GF-1 cells prevented loss of MMP at 24 h and 48 h p.t. and blocked initiator caspase-8 and effector caspase-3 activation at 48 h p.t. We conclude that RGNNV protein alpha induces apoptosis followed by secondary necrotic cell death through a mitochondria-mediated death pathway and activation of caspases-8 and -3. 相似文献
11.
The protein kinase C (PKC) signal transduction pathway negatively regulates receptor-initiated cell death. In HeLa cells, tumor necrosis factor-alpha (TNF)-mediated cell death involved mitochondria and was blocked by the overexpression of Bcl-2. The PKC-specific inhibitor bisindolylmaleimide and the PKCdelta inhibitor rottlerin enhanced TNF-induced cell death. We have investigated if potentiation of TNF-induced cell death by rottlerin involved amplification of the mitochondrial pathway. TNF induced cleavage of the proapoptotic protein Bid and release of mitochondrial cytochrome c. Rottlerin enhanced activation of caspase-8 and cleavage of Bid. It also enhanced activation of caspase-9 but it did not increase cytochrome c in the cytosol. It, however, increased release of mitochondrial apoptosis-inducing factor (AIF) to the cytosol. Overexpression of Bcl-2 prevented release of both cytochrome c and AIF to the cytosol. Prolonged exposure (> or =6 h) of HeLa cells to rottlerin and TNF decreased the level of cytochrome c but not of AIF in the cytosol. These results suggest that rottlerin activates a cytochrome-c-independent cell death pathway to potentiate cell death by TNF. 相似文献
12.
Short-term stimulation (i.e. <2 days) with tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma (IFN-gamma) cause growth arrest and sensitize epithelial cells to CD95 (Fas/Apo-1)-mediated cell death. The effect of long-term cytokine exposure on viability, proliferation, and apoptosis response of colonic epithelial cells is unknown and addressed in this study. In the present study HT29 and DLD-1 colonic cells were stimulated with either TNF-alpha or IFN-gamma at varying concentrations for 2-9 days. Viability and proliferation was assessed. CD95-mediated cell death response was determined. IFN-gamma caused decreased viability at high concentrations (1 nM), whereas lower concentrations (10-100 pM) only caused a transient growth arrest. TNF-alpha (100 pM) did not affect cell growth. Cells stimulated for 8 days with IFN-gamma (10 pM) or TNF-alpha (100 pM) had higher proliferation rates than controls or cells stimulated for 2 days (p < 0.05). Whereas the spontaneous cell death increased slightly during continuous cytokine exposure the CD95L response decreased (P < 0.01). Colonic cells continuously exposed to IFN-gamma or TNF-alpha had cell turnover characteristics that resemble findings in patients with UC. Increased proliferation and decreased cell death response may act as a counter regulatory mechanism that limits the damaging effects of cytokines. 相似文献
13.
Yuli Wu Manorama Tewari Shijun Cui Raphael Rubin 《Journal of cellular physiology》1996,168(3):499-509
The effect of insulin-like growth factor (IGF) on tumor necrosis factor (TNF)-induced cell killing was determined for mouse BALB/c3T3 fibroblasts in vitro. Cells maintained in 0.5% fetal bovine serum (FBS) were killed by TNF within 6 h in a concentration-dependent manner, an effect that was prevented by IGF-I. TNF-induced cytotoxicity of 3T3 cells that overexpress the human IGF-I receptor (p6 cells) was prevented by IGF-I alone in the absence of serum. TNF-induced cell death was associated with the morphologic features of apoptosis and the release of low-molecular-weight DNA, both of which were prevented by IGF-I. Neither epidermal growth factor (EGF) nor platelet-derived growth factor (PDGF) protected p6 cells from TNF-induced apoptosis. The specific protective action of the IGF-I receptor was demonstrated further by the marked sensitivity to TNF of embryo fibroblasts derived from mice with targeted disruption of the IGF-I receptor (R cells) but not of fibroblasts derived from wild-type littermates or R cells transfected with the cDNA for the human IGF-I receptor. Cycloheximide or actinomycin D markedly reduced the protection offered by IGF-I. IGF-I protection of BALB/c3T3 cells persisted for up to 5 days in the presence of PDGF and EGF, whereas IGF-I lost its effectiveness after 2 days in the absence of growth factors. IGF-I did not prevent TNF-induced release of arachidonic acid. The results demonstrate a specific role for the IGF-I receptor in the protection against TNF cytotoxicity. This action of the IGF-I receptor is mediated by protective cytosolic proteins that exhibit a high rate of turnover and whose levels are regulated principally by factors within serum other than IGF-I. © 1996 Wiley-Liss, Inc. 相似文献
14.
Decreased heat- and tumor necrosis factor-mediated hsp28 phosphorylation in thermotolerant HeLa cells 总被引:5,自引:0,他引:5
Heat shock or tumor necrosis factor rapidly stimulated the phosphorylation of the mammalian low molecular weight stress protein hsp28. We have found that both phenomena are greatly decreased in cells which are made tolerant to heat. This observation correlated with a better survival of thermotolerant cells exposed to either heat or TNF treatment. The results suggest that the phosphorylation of hsp28 may be linked to the resistance of the cells to the deleterious effects induced by either heat or a mediator of inflammation such as TNF. 相似文献
15.
Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death 总被引:6,自引:0,他引:6
Dbaibo GS El-Assaad W Krikorian A Liu B Diab K Idriss NZ El-Sabban M Driscoll TA Perry DK Hannun YA 《FEBS letters》2001,503(1):7-12
Ceramide accumulation in the cell can occur from either hydrolysis of sphingomyelin or by de novo synthesis. In this study, we found that blocking de novo ceramide synthesis significantly inhibits ceramide accumulation and subsequent cell death in response to tumor necrosis factor alpha. When cells were pre-treated with glutathione, a proposed cellular regulator of neutral sphingomyelinase, inhibition of ceramide accumulation at early time points was achieved with attenuation of cell death. Inhibition of both pathways achieved near-complete inhibition of ceramide accumulation and cell death indicating that both pathways of ceramide generation are stimulated. This illustrates the complexity of ceramide generation in cytokine action. 相似文献
16.
Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2 总被引:14,自引:0,他引:14
Pretreatment of HT-1080 fibrosarcoma cells with tumor necrosis factor (TNF) induced resistance to the cytolytic activity of this cytokine in combination with cycloheximide. This resistance correlated with the synthesis of plasminogen activator inhibitor type-2 (PAI-2). HT-1080 cells were transfected with a PAI-2 expression vector in both sense and antisense orientation. The resistance to TNF-mediated cytolysis of transfected cell clones was correlated with the level of PAI-2 expression. Cells expressing antisense PAI-2 RNA showed reduced expression of PAI-2 and increased sensitivity to TNF-mediated cytolysis. Cells expressing constitutively PAI-2 were treated with TNF and cycloheximide to select cells with increased resistance to cytolysis and enhanced PAI-2 expression. PAI-2 gradually disappeared during a treatment with TNF and cycloheximide. This finding suggested that PAI-2 formed a complex with a target proteinase, which could be involved in mediating the cytolytic activity of TNF. 相似文献
17.
18.
Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli. 相似文献
19.
Heat shock proteins,cellular chaperones that modulate mitochondrial cell death pathways 总被引:30,自引:0,他引:30
Parcellier A Gurbuxani S Schmitt E Solary E Garrido C 《Biochemical and biophysical research communications》2003,304(3):505-512
Stress or heat shock proteins (HSPs) are ubiquitous and highly conserved proteins whose expression is induced in response to a wide variety of physiological and environmental insults. They allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. These proteins play an essential role in intracellular "house-keeping" by assisting the correct folding of nascent and stress-accumulated misfolded proteins and preventing their aggregation. Several HSPs have also demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream, and downstream of the mitochondrial events. Finally, HSPs could play a role in the proteasome-mediated degradation of selected proteins under stress conditions. Altogether, these properties could make HSPs appropriate targets for modulating cell death pathways. 相似文献
20.
Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death
Kamijima T Ohmura A Sato T Akimoto K Itabashi M Mizuguchi M Kamiya M Kikukawa T Aizawa T Takahashi M Kawano K Demura M 《Biochemical and biophysical research communications》2008,376(1):211-214
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells), which was identified in human breast milk as an alpha-lactalbumin (LA)-oleic acid complex, kills tumor cells, selectively. Although it may have potential as a therapeutic agent against various tumor cells, only low-volume methods for its production exist. In this study, heat treatment was used to produce complexes from LAs and oleic acid using a simple method. In the case of human LA and oleic acid, heat-treated samples apparently showed much stronger activities than those treated at room temperature, with cytotoxicities equal to that of HAMLET. Furthermore, circular dichroism spectroscopy revealed that heat-treated samples lost their tertiary structure, suggesting a molten globule as oleic acid-bound LA. BLA samples also showed strong activities by heat treatment. Batch production with heat treatment can efficiently convert LAs into tumoricidal complexes. 相似文献