首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leukocyte adhesion deficiency/congenital disorder of glycosylation IIc (LAD II/CDG IIc) is a genetic disease characterized by a decreased expression of fucose in glycoconjugates, resulting in leukocyte adhesion deficiency and severe morphological and neurological abnormalities. The biochemical defect is a reduced transport of guanosine diphosphate-L-fucose (GDP-L-fucose) from cytosol into the Golgi compartment, which reduces its availability as substrate for fucosyltransferases. The aim of this study was to determine the effects of a limited supply of GDP-L-fucose inside the Golgi on core fucosylation (alpha1,6-fucose linked to core N-acetylglucosamine [GlcNAc]) of N-linked glycans in LAD II fibroblasts. The results showed that, although [3H]fucose incorporation was generally reduced in LAD II cells, core fucosylation was affected to a greater extent compared with other types of fucosylation of N-linked oligosaccharides. In particular, core fucosylation was found to be nearly absent in biantennary negatively charged oligosaccharides, whereas other types of structures, in particular triantennary neutral species, were less affected by the reduction. Expression and activity of alpha1,6-fucosyltransferase (FUT8) in control and LAD II fibroblasts were comparable, thus excluding the possibility of a decreased activity of the transferase. The data obtained confirm that the concentration of GDP-L-fucose inside the Golgi can differentially affect the various types of fucosylation in vivo and also indicate that core fucosylation is not dependent only on the availability of GDP-L-fucose, but it is significantly influenced by the type of oligosaccharide structure. The relevant reduction in core fucosylation observed in some species of oligosaccharides could also provide clues for the identification of glycans involved in the severe developmental abnormalities observed in LAD II.  相似文献   

2.
LAD II/CDG IIc is a rare autosomal recessive disease characterized by a decreased expression of fucosylated antigens on cell surfaces that results in leukocyte adhesion deficiency and severe neurological and developmental abnormalities. Its molecular basis has been identified as a defect in the transporter of GDP-l-fucose into the Golgi lumen, which reduces the availability of the substrate for fucosyltransferases. During metabolic radiolabeling experiments using [3H]fucose, LAD II fibroblasts incorporated significantly less radiolabel compared with control cells. However, fractionation and analysis of the different classes of glycans indicated that the decrease in [3H]fucose incorporation is not generalized and is mainly confined to terminal fucosylation of N-linked oligosaccharides. In contrast, the total levels of protein O-fucosylation, including that observed in Notch protein, were unaffected. This finding demonstrates that the decrease in GDP-l-fucose levels in the fibroblast Golgi caused by the LAD II defect does not impair bulk protein O-fucosylation, but severely affects the bulk addition of fucose as a terminal modification of N-linked glycans. These data suggest that the severe clinical abnormalities including neurological and developmental ones observed in at least some of the LAD II patients may be related to alteration in recognition systems involving terminal fucose modifications of N-glycans and not be due to a defective O-fucosylation of proteins such as Notch.  相似文献   

3.
Protein glycosylation is a complex process that depends not only on the activities of several enzymes and transporters but also on a subtle balance between vesicular Golgi trafficking, compartmental pH, and ion homeostasis. Through a combination of autozygosity mapping and expression analysis in two siblings with an abnormal serum-transferrin isoelectric focusing test (type 2) and a peculiar skeletal phenotype with epiphyseal, metaphyseal, and diaphyseal dysplasia, we identified TMEM165 (also named TPARL) as a gene involved in congenital disorders of glycosylation (CDG). The affected individuals are homozygous for a deep intronic splice mutation in TMEM165. In our cohort of unsolved CDG-II cases, we found another individual with the same mutation and two unrelated individuals with missense mutations in TMEM165. TMEM165 encodes a putative transmembrane 324 amino acid protein whose cellular functions are unknown. Using a siRNA strategy, we showed that TMEM165 deficiency causes Golgi glycosylation defects in HEK cells.  相似文献   

4.
The p150,95 cell surface protein is a member of a family of heterodimeric leukocyte adhesion proteins that have homologous alpha subunits, each noncovalently associated with a common beta subunit. In this report we have metabolically labeled the U937 cell line at various timepoints during its phorbol myristic acetate-induced maturation to examine the kinetics of synthesis of these proteins during monocytic differentiation, and their maturation and glycosylation. The p150,95 alpha subunit was immunoprecipitated with p150,95-specific monoclonal antibody (MAb), or an antiserum to the denatured, purified alpha X subunit. The glycosylation and polypeptide chain length of the p150,95, Mac-1, and lymphocyte function associated antigen (LFA-1) alpha and beta subunits were compared by immunoprecipitation with subunit specific MAb and antisera, and by digestion with Endo H and N-glycanase. The p150,95 alpha subunit is synthesized as a precursor of 146,000 Mr, has five to six N-linked oligosaccharides, and has a polypeptide chain backbone of 132,000 Mr. Over 50% of the carbohydrate on the mature alpha subunit of 150,000 Mr was sensitive to Endo H digestion. The p150,95 alpha and beta precursors can associate before maturation into the mature form. Conversion to the mature form was accompanied by loss of reactivity with the antiserum to the denatured alpha X subunit, suggesting a change in conformation. Mac-1 and LFA-1 alpha subunits have precursors of 160,000 Mr and 165,000 Mr, respectively, and contain N-linked carbohydrates. The polypeptide chain length for the Mac-1 alpha subunit is 137,000 Mr, and for LFA-1 is 149,000 Mr. Only 14% of the oligosaccharide on the mature LFA-1 alpha subunit was sensitive to Endo H, suggesting that unlike p150,95, most is converted to the complex type. The differences noted in the Mr of the three homologous alpha subunits are therefore due to differences in both polypeptide chain length and carbohydrate processing during biosynthesis.  相似文献   

5.
Leukocyte adhesion deficiency type III is a recently described condition involving a Glanzmann-type bleeding syndrome and leukocyte adhesion deficiency. This was ascribed to a defect of the FERMT3 gene resulting in abnormal expression of kindlin-3, a protein expressed in hematopoietic cells with a major role in the regulation of integrin activation. In this article, we describe a patient with a new mutation of FERMT3 and lack of kindlin-3 expression in platelets and leukocytes. We assayed quantitatively the first steps of kindlin-3-defective leukocyte adhesion, namely, initial bond formation, bond strengthening, and early spreading. Initial bond formation was readily stimulated with neutrophils stimulated by fMLF, and neutrophils and lymphocytes stimulated by a phorbol ester or Mn(2+). In contrast, attachment strengthening was defective in the patient's lymphocytes treated with PMA or Mn(2+), or fMLF-stimulated neutrophils. However, attachment strengthening was normal in patient's neutrophils treated with phorbol ester or Mn(2+). In addition, the patient's T lymphocytes displayed defective integrin-mediated spreading and a moderate but significant decrease of spreading on anti-CD3-coated surfaces. Patient's neutrophils displayed a drastic alteration of integrin-mediated spreading after fMLF or PMA stimulation, whereas signaling-independent Mn(2+) allowed significant spreading. In conclusion, the consequences of kindlin-3 deficiency on β(2) integrin function depend on both cell type and the stimulus used for integrin activation. Our results suggest looking for a possible kindlin-3 involvement in membrane dynamical event independent of integrin-mediated adhesion.  相似文献   

6.
Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic   总被引:4,自引:0,他引:4  
Congenital disorders of glycosylation (CDG), formerly known as carbohydrate-deficient glycoprotein syndrome, represent a family of genetic diseases with variable clinical presentations. Common to all types of CDG characterized to date is a defective Asn-linked glycosylation caused by enzymatic defects of N-glycan synthesis. Previously, we have identified a mutation in the ALG6 alpha1,3 glucosyltransferase gene as the cause of CDG-Ic in four related patients. Here, we present the identification of seven additional cases of CDG-Ic among a group of 35 untyped CDG patients. Analysis of lipid-linked oligosaccharides in fibroblasts confirmed the accumulation of dolichyl pyrophosphate-Man9GlcNAc2 in the CDG-Ic patients. The genomic organization of the human ALG6 gene was determined, revealing 14 exons spread over 55 kb. By polymerase chain reaction amplification and sequencing of ALG6 exons, three mutations, in addition to the previously described A333 V substitution, were detected in CDG-Ic patients. The detrimental effect of these mutations on ALG6 activity was confirmed by complementation of alg6 yeast mutants. Haplotype analysis of CDG-Ic patients revealed a founder effect for the ALG6 allele bearing the A333 V mutation. Although more than 80% of CDG are type Ia, CDG-Ic may be the second most common form of the disease.  相似文献   

7.
N-linked glycosylation is an essential posttranslational modification of proteins in eukaryotes. The substrate of N-linked glycosylation, dolichol pyrophosphate (DolPP)-GlcNAc(2)Man(9)Glc(3), is assembled through a complex series of ordered reactions requiring the translocation of the intermediate DolPP-GlcNAc(2)Man(5) structure across the endoplasmic-reticulum membrane. A young patient diagnosed with a congenital disorder of glycosylation characterized by an intracellular accumulation of DolPP-GlcNAc(2)Man(5) was found to carry a homozygous point mutation in the RFT1 gene. The c.199C-->T mutation introduced the amino acid substitution p.R67C. The human RFT1 protein shares 22% identity with its yeast ortholog, which is involved in the translocation of DolPP-GlcNAc(2)Man(5) from the cytosolic into the lumenal side of the endoplasmic reticulum. Despite the low sequence similarity between the yeast and the human RFT1 proteins, we demonstrated both their functional orthology and the pathologic effect of the human p.R67C mutation by complementation assay in Deltarft1 yeast cells. The causality of the RFT1 p.R67C mutation was further established by restoration of normal glycosylation profiles in patient-derived fibroblasts after lentiviral expression of a normal RFT1 cDNA. The definition of the RFT1 defect establishes the functional conservation of the DolPP-GlcNAc(2)Man(5) translocation process in eukaryotes. RFT1 deficiency in both yeast and human cells leads to the accumulation of incomplete DolPP-GlcNAc(2)Man(5) and to a profound glycosylation disorder in humans.  相似文献   

8.
Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.  相似文献   

9.
A nonisotopic ligase chain reaction (LCR) assay was developed to detect the mutation (D128G; Shuster et al. (1992) PNAS 89, 9225-9) for bovine leukocyte adhesion deficiency (BLAD). Two sets of diagonally opposed discriminating LCR primers that differentiate the normal and BLAD allele were designed so that the 3′ end of each primer overlapped the D128G mutation. These discriminating primers were synthesized with a 5′ biotin and could be captured using streptavidin-coated microtitre wells. A common set of primers that abut these discriminating primers were also synthesized and 3′-tailed with digoxigenin-ddUTP. Captured LCR products were then detected using antidigoxigenin antibodies coupled to alkaline phosphatase. The assay readout was a chemiluminescent signal generated by the hydrolysis of Lumi-Phos TM 530 and the entire assay including DNA isolation can be completed within 8 h.  相似文献   

10.
Recent successes in treating genetic immunodeficiencies have demonstrated the therapeutic potential of stem cell gene therapy. However, the use of gammaretroviral vectors in these trials led to insertional activation of nearby oncogenes and leukemias in some study subjects, prompting studies of modified or alternative vector systems. Here we describe the use of foamy virus vectors to treat canine leukocyte adhesion deficiency (CLAD). Four of five dogs with CLAD that received nonmyeloablative conditioning and infusion of autologous, CD34+ hematopoietic stem cells transduced by a foamy virus vector expressing canine CD18 had complete reversal of the CLAD phenotype, which was sustained more than 2 years after infusion. In vitro assays showed correction of the lymphocyte proliferation and neutrophil adhesion defects that characterize CLAD. There were no genotoxic complications, and integration site analysis showed polyclonality of transduced cells and a decreased risk of integration near oncogenes as compared to gammaretroviral vectors. These results represent the first successful use of a foamy virus vector to treat a genetic disease, to our knowledge, and suggest that foamy virus vectors will be effective in treating human hematopoietic diseases.  相似文献   

11.
This review highlights the genotype-phenotype relationship of the genetic immunodeficiency disease leukocyte adhesion deficiency (LAD) in humans, dogs, cattle, and mice, and provides assessment of the opportunities that each animal species provides in the understanding of leukocyte biology and in developing new therapeutic approaches to LAD in humans. This comparison is important since animal models of genetic diseases in humans provide the opportunity to test new therapeutic approaches in an appropriate, disease-specific model. The success of this approach is dependent on the relationship of the phenotype in the animal to the phenotype of the disease in humans.  相似文献   

12.
Leukocyte adhesion deficiency (LAD) is a hereditary disease characterized by defective expression of leukocyte adhesion glycoproteins; lymphocyte function-associated Ag-1 (CD11a/CD18), CR3 (CD11b/CD18) and p150,95 (CD11c/CD18). Granulocytes, monocytes, and lymphocytes of patients with LAD show profoundly defective in vivo and in vitro adherence-dependent immune functions. We investigated the expression of FcR for IgG on polymorphonuclear cells (PMN) and monocytes from patients with LAD, and their luminol- and lucigenin-enhanced chemiluminescence production in response to SRBC sensitized with murine (m) IgG2a and IgG2b. Unstimulated patient PMN showed an enhanced chemiluminescence in response to mIgG2a-SRBC and an increased phagocytosis of mIgG2a-SRBC. The up-regulated functions were inhibited by monomeric human IgG in a dose-dependent manner, which was attributed to an increase in expression of FcRI on patient PMN, as shown by flow cytometry using monoclonal antibody, 32.2, specific for human FcRI. In contrast, neither the expression of FcR on the monocytes of LAD patients nor their FcR-mediated functions were different from those of controls.  相似文献   

13.
The molecular nature of a severe multisystemic disorder with a recurrent nonimmune hydrops fetalis was identified as deficiency of GDP-Man:GlcNAc(2)-PP-dolichol mannosyltransferase, the human orthologue of the yeast ALG1 gene (MIM 605907). The disease belongs to the group of congenital disorders of glycosylation (CDG) and is designated as subtype CDG-Ik. In patient-derived serum, the total amount of the glycoprotein transferrin was reduced. Moreover, a partial loss of N-glycan chains was observed, a characteristic feature of CDG type I forms. Metabolic labeling with [6-(3)H]glucosamine revealed an accumulation of GlcNAc(2)-PP-dolichol and GlcNAc(1)-PP-dolichol in skin fibroblasts of the patient. Incubation of fibroblast extracts with [(14)C]GlcNAc(2)-PP-dolichol and GDP-mannose indicated a severely reduced activity of the beta 1,4-mannosyltransferase, elongating GlcNAc(2)-PP-dolichol to Man(1)GlcNAc(2)-PP-dolichol at the cytosolic side of the endoplasmic reticulum. Genetic analysis of the patient's hALG1 gene identified a homozygous mutation leading to the exchange of a serine residue to leucine at position 258 in the hALG1 protein. The disease-causing nature of the hALG1 mutation for the glycosylation defect was verified by a retroviral complementation approach in patient-derived primary fibroblasts and was confirmed by the expression of wild-type and mutant hALG1 in the Saccharomyces cerevisiae alg1-1 strain.  相似文献   

14.
Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.  相似文献   

15.
A missense mutation in the ITGB2 gene causes canine leukocyte adhesion deficiency (CLAD) in Irish setters. We constructed a diagnostic test to identify heterozygous CLAD carriers based on a newly developed technology termed pyrosequencing. Although primarily designed for high-speed generation of DNA sequence in a gel-free system, the technology can be applied to rapid single-nucleotide polymorphism analysis in a clinical setting. The testing of 339 dogs originating from a total of 10 countries was conducted and CLAD carriers were identified within every country where more than one sample was analysed. This indicates that the CLAD mutation is widespread and that there is a strong need for a robust diagnostic test.  相似文献   

16.
17.
Haptoglobin is one of acute phase glycoproteins often used as markers in glycopathology studies. In this work the oligosaccharide structures of haptoglobin from 'healthy' subjects have been studied in detail, taking into consideration the possible dependence of glycosylation on the phenotype. About 75% of charged haptoglobin glycans were of biantennary complex structure, and some of them lacked one terminal sialic acid molecule. Triantennary structures made up almost 25% of the charged glycans pool, and highly branched tetrasialylated oligosaccharides did not exceed 1%. The main difference between haptoglobin derived from the sample of pooled 44 sera and from the 2-2 phenotype individual concerned the relative content of trisialylated oligosaccharide with one 2-3 linked sialic acid residue. The oligosaccharide profile of haptoglobin derived from serum of a patient suffering from congenital disorder of glycosylation was compared to 'healthy' controls. It was shown, that four main glycans are identical in patient and 'normal' haptoglobins. Some alterations were found in the relative content of mono-, bi-, and trisialylated glycans as well as in the appearance of some tracely abundant oligosaccharides in haptoglobin of the patient with congenital disorder of glycosylation.  相似文献   

18.
Congenital disorder of glycosylation-Ia (CDG-Ia, also known as PMM2-CDG) is caused by mutations in the gene that encodes phosphomannomutase 2 (PMM2, EC 5.4.2.8) leading to a multisystemic disease with severe psychomotor and mental retardation. In a hypomorphic Pmm2 mouse model, we were able to overcome embryonic lethality by feeding mannose to pregnant dams. The results underline the essential role of glycosylation in embryonic development and may open new treatment options for this disease.  相似文献   

19.
More than 150 molecular species were detected in a single glycoconjugate fraction obtained from urine of a congenital disorders of glycosylation (CDG) patient by use of high-resolution FT-ICR MS. With respect to its high-mass accuracy and resolving power, FT-ICR MS represents an ideal tool for analysis of single components in complex glycoconjugate mixtures obtained from body fluids. The presence of overlapping nearly isobaric ionic species in glycoconjugate mixtures obtained from CDG patient's urine was postulated from fragmentation data of several precursor ions obtained by nanoESI Q-TOF CID. Their existence was confirmed by high-resolution/high-mass accuracy FT-ICR MS detection. High-resolution FT-ICR mass spectra can, therefore, be generally considered for glycoscreening of complex mixture samples in a single stage. From the accurate molecular ion mass determinations the composition of glycoconjugate species can be identified. Particular enhancement of identification is offered by computer-assisted calculations in combination with monosaccharide building block analysis, which can be extended by considerations of non-carbohydrate modifications, such as amino acids, phosphates and sulfates. Taking advantage of this strategy, the number of compositions assigned to mass peaks was significantly increased in a fraction obtained from urine by size exclusion and anion exchange chromatography.  相似文献   

20.
BLAD is an autosomal recessive genetic disease that affects Holstein-Friesian (HF) cattle worldwide. It is a disease characterized by a reduced expression of the adhesion molecules on neutrophils. The disease is caused by a mutation that replaces adenine at 383 with guanine, which causes an amino acid change from aspartic acid to glycine. Blood samples and a few semen samples were collected from 1250 phenotypically normal individuals, including HF (N=377), HF crossbred (N=334), Jersey (105), other breeds of cattle (N=160) and water buffalo Bubalus bubalis (N=274) belonging to various artificial insemination stations, bull mother farms (BMFs) and embryo transfer (ET) centres across the country. PCR-RFLP was performed to detect a point mutation in CD18, surface molecules of neutrophils. The results indicate that out of 1250 cattle and buffaloes tested for BLAD, 13 HF purebreds out of 377 and 10 HF crossbreds out of 334 appear to be BLAD carriers. In the HF and HF crossbred population, the percentage of BLAD carriers was estimated as 3.23%. The condition is alarming as the mutant gene has already entered the HF crossbred cattle population and therefore, the population of HF and its crossbreds needs regular screening to avoid the risk of spreading BLAD in the breeding cattle population of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号