首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic hydrolysis of cellulosic material is an essential step in the bioethanol production process. However, complete cellulose hydrolysis by cellulase is difficult due to the irreversible adsorption of cellulase onto cellulose. Thus, part of the cellulose remains in crystalline form after hydrolysis. In this study, after 96-h hydrolysis of Avicel crystalline cellulose, 47.1 % of the cellulase was adsorbed on the cellulose surface with 10.8 % crystalline cellulose remaining. In simultaneous saccharification and fermentation of 100 g/L Avicel with 1.0 filter paper unit/mL cellulase, a wild-type yeast strain produced 44.7 g/L ethanol after 96 h. The yield of ethanol was 79.7 % of the theoretical yield. On the other hand, a recombinant yeast strain displaying various cellulases, such as β-glucosidase, cellobiohydrolase, and endoglucanase, produced 48.9 g/L ethanol, which corresponds to 87.3 % of the theoretical yield. Higher ethanol production appears to be attributable to higher efficiency of cellulase displayed on the cell surface. These results suggest that cellulases displayed on the yeast cell surface improve hydrolysis of Avicel crystalline cellulose. Indeed, after the 96-h simultaneous saccharification and fermentation using the cellulase-displaying yeast, the amount of residual cellulose was 1.5 g/L, one quarter of the cellulose remaining using the wild-type strain, a result of the alleviation of irreversible adsorption of cellulases on the crystalline cellulose.  相似文献   

2.
Summary The synergistic action of purified cellulases from Trichoderma reesei in hydrolysis of cellulose decreased with increasing substrate concentration, depended strongly on the the type of cellulose used, and was maximal on crystalline cellulose. Contrarily, the activity of the individual cellulases was highest on amorphous cellulose. The binary combinations CBH I/EG III and CBH I/CBH II exhibited the greatest degree of synergism on crystalline cellulose.  相似文献   

3.
To try to improve hydrolysis yields at elevated solids loadings, a comparison was made between batch and fed-batch addition of fresh substrate at the initial and later phases of hydrolysis. Both ethanol (EPCS) and steam-pretreated corn stover (SPCS) substrates were tested at low (5 FPU) and high (60 FPU) loadings of cellulase per gram of cellulose. The fed-batch addition of fresh substrate resulted in a slight decrease in hydrolysis yields when compared with the corresponding batch reactions. A 72-h hydrolysis of the SPCS substrate resulted in a hydrolysis yield of 66% compared with 51% for the EPCS substrate. When the enzyme adsorption and substrate characteristics were assessed during batch and fed-batch hydrolysis, it appeared that the irreversible binding of cellulases to the more recalcitrant original substrate limited their access to the freshly added substrate. After 72-h hydrolysis of the SPCS substrate at low enzyme loadings, ~40-50% of the added cellulases were desorbed into solution, whereas only 20% of the added enzyme was released from the EPCS substrate. Both simultaneous and sequential treatments with xylanases and cellulases resulted in an up to a 20% increase in hydrolysis yields for both substrates at low enzyme loading. Simons' stain measurements indicated that xylanase treatment increased cellulose access, thus facilitating cellulose hydrolysis.  相似文献   

4.
Summary Various modes of substrate and enzyme addition were used to hydrolyze a 10% concentration (w/v) of steam-exploded, water-and-alkali extracted aspenwood withTrichoderma harzianum E58 cellulases. Although cellulose conversion was high (94–100%), enzyme recovery was low in all cases. Low enzyme recovery was due to a combination of thermal inactivation and adsorption of the cellulases onto the lignocellulosic residue. Enzyme recycle was not feasible as the activity of the recovered cellulases towards crystalline cellulose was low. However, the residual material from enzyme hydrolysis was a suitable carbon source for cellulase enzyme production byT. harzianum based on enzyme yield and hydrolytic potential. These residues could only be used up to a 1% substrate concentration, since at higher substrate loadings cellulase production was reduced, likely because of lignin inhibitors.  相似文献   

5.
Enzymatic hydrolysis of cellulose often involves cellulases produced by Trichoderma reesei, of which cellobiohydrolase1 (CBH1) is the most abundant (about 60% of total cellulases) and plays an important role in the hydrolysis of crystalline cellulose. A method for separating sufficient quantities from the bulk cellulase cocktail is highly desirable for many studies, such as those that aim to characterize binding and hydrolysis kinetics of CBH1. In this work, CBH1 was separated from other Spezyme CP cellulases by ion-exchange chromatography using an efficient modification of a smaller scale process. The ion-exchange column was connected to a vacuum manifold system to provide a steady flow through parallel columns and thus achieve scale-up for enzyme separation. With five 5-mL columns running in parallel, about 55 mg of CBH1 was separated from 145 mg of Spezyme CP in a single separation. Step elution was used to replace the continuous gradient used at smaller scale. The purified CBH1 was collected in the fraction eluted with a buffer containing 0.33 M salt and showed comparable purity and activity as the enzyme purified by a fast protein liquid chromatography system. The stability of separated CBH1 was studied for up to 2 days and good thermal stability was observed. Separated CBH1 also showed both high adsorption to bacterial microcrystalline cellulose with ~4 μmol/g maximum adsorption and a K(a) of 5.55 ± 2.34 μM(-1) , and good hydrolytic activity based on atomic force microscopy observations that show a reduction in fiber height.  相似文献   

6.
The effects of structural properties and their changes during cellulose hydrolysis on the enzymatic hydrolysis rate have been studied from the reaction mechanism point of view. Important findings are the following: (1) The crystallinity index (CrI) of partially crystalline cellulose increases as the hydrolysis reaction proceeds, and a significant slowing down of the reaction rate during the enzymatic hydrolysis is, in large part, attributable to this structural change of cellulose substrate. (2) The crystallinity of completely disordered cellulose, like phosphoric-acid-treated cellulose, does not change significantly, and a relatively high hydrolysis rate is maintained during hydrolysis. (3) The specific surface area (SSA) of partially crystalline cellulose decreases significantly during enzymatic hydrolysis while the change in SSA of regenerated cellulose is found to be negligible. (4) The value of degree of polymerization (DP) of highly ordered crystalline cellulose remains practically constant whereas the change in DP of disordered regenerated cellulose is found to be very significant. (5) Combination of these structural effects as well as cellulase adsorption, product inhibition, and cellulase deactivation all have important influence on the rate of cellulase reaction during cellulose hydrolysis. More experimental evidence for a two-phase model, which is based on degradation of cellulose by simultaneous actions of cellulase complex on the crystalline and amorphous phases, has been obtained. Based on experimental results from this study and other results accumulated, the mode of cellulase action and a possible reaction mechanism are proposed.  相似文献   

7.
The adsorption mode of two highly purified cellulases, exo- and endo-type cellulases, from Irpex lacteus (Polyporus tulipiferae) was investigated by using pure cellulosic materials with different crystallinity as substrates. Adsorption of the two enzymes on the substrates was found to fit the Langmuir-type adsorption isotherm. Maximum amount of adsorbed enzyme obtained from the Langmuir plots showed an inverse correlation to the crystallinity of the substrate with both enzymes, and this value of endo-type cellulase was less dependent on the degree of crystallinity of substrates than that of exo-type cellulase, whose isotherms reached saturation in the range of low enzyme concentrations. The two enzymes showed relatively high affinities for all the substrates and their affinities increased with increasing crystallinity, but this tendency was less marked with endo-type cellulase than with exo-type one. In addition, large negative values of free energy change were observed on the adsorption of both enzymes, and the values became more negative with increasing crystallinity. Consequently, both cellulases showed high adsorption on crystalline cellulose and the adsorption process became smoother with increasing crystallinity. The adsorption of the two types of cellulases was endothermic with an increase in entropy, especially for amorphous cellulose, suggesting the occurrence of water release from the substrates during enzyme adsorption. In addition, the changes in thermodynamic parameters (delta H, delta S, and delta G) in adsorption of exo-type cellulase were larger than in that of endo-type enzyme.  相似文献   

8.
To assess the effects that the physical and chemical properties of lignin might have on the enzymatic hydrolysis of pretreated lignocellulosic substrates, protease treated lignin (PTL) and cellulolytic enzyme lignin (CEL) fractions, isolated from steam and organosolv pretreated corn stover, poplar, and lodgepole pine, were prepared and characterized. The adsorption of cellulases to the isolated lignin preparations corresponded to a Langmuir adsorption isotherm. It was apparent that, rather than the physical properties of the isolated lignin, the carboxylic acid functionality of the isolated lignin, as determined by FTIR and NMR spectroscopy, had much more of an influence when lignin was added to typical hydrolysis of pure cellulose (Avicel). An increase in the carboxylic content of the lignin preparation resulted in an increased hydrolysis yield. These results suggested that the carboxylic acids within the lignin partially alleviate non-productive binding of cellulases to lignin. To try to confirm this possible mechanism, dehydrogenative polymers (DHP) of monolignols were synthesized from coniferyl alcohol (CA) and ferulic acid (FA), and these model compounds were added to a typical enzymatic hydrolysis of Avicel. The DHP from FA, which was enriched in carboxylic acid groups compared with the DHP from CA, adsorbed a lower mount of cellulases and did not decrease hydrolysis yields when compared to the DHP from CA, which decreased the hydrolysis of Avicel by 8.4%. Thus, increasing the carboxylic acid content of the lignin seemed to significantly decrease the non-productive binding of cellulases and consequently increased the enzymatic hydrolysis of the cellulose.  相似文献   

9.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

10.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

11.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

12.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

13.
Recent advances in the delineation of the biochemical mechanisms of cellulose hydrolysis, strain improvement, molecular cloning and process engineering are bringing T. reesei cellulases closer to being a commercially viable route to cellulose hydrolysis.  相似文献   

14.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

15.
Lignin-derived inhibition is a major obstacle restricting the enzymatic hydrolysis of cell wall polysaccharides especially with softwood lignocellulosics. Enzyme adsorption on lignin is suggested to contribute to the inhibitory effect of lignin. The interaction of cellulases with softwood lignin was studied in the present work with commercial Trichoderma reesei cellulases (Celluclast) and lignin-rich residues isolated from steam pretreated softwood (SPS) by enzymatic and acid hydrolysis. Both lignin preparations inhibited the hydrolysis of microcrystalline cellulose (Avicel) and adsorbed the major cellulases present in the commercial cellulase mixture. The adsorption phenomenon was studied at low temperature (4°C) and at the typical hydrolysis temperature (45°C) by following activities of free and lignin-bound enzymes. Severe inactivation of the lignin-bound enzymes was observed at 45°C, however at 4°C the enzymes retained well their activity. Furthermore, SDS-PAGE analysis of the lignin-bound enzymes indicated that very strong interactions form between the residue and the enzymes at 45°C, because the enzymes were not released from the residue in the electrophoresis. These results suggest that heat-induced denaturation may take place on the surface of softwood lignin at the hydrolysis temperature.  相似文献   

16.
17.
Bacterial proteins categorized as family 33 carbohydrate-binding modules (CBM33) were recently shown to cleave crystalline chitin, using a mechanism that involves hydrolysis and oxidation. We show here that some members of the CBM33 family cleave crystalline cellulose as demonstrated by chromatographic and mass spectrometric analyses of soluble products released from Avicel or filter paper on incubation with CelS2, a CBM33-containing protein from Streptomyces coelicolor A3(2). These enzymes act synergistically with cellulases and may thus become important tools for efficient conversion of lignocellulosic biomass. Fungal proteins classified as glycoside hydrolase family 61 that are known to act synergistically with cellulases are likely to use a similar mechanism.  相似文献   

18.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

19.
Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation.  相似文献   

20.
Two fractions of substrate in microcrystalline cellulose which differ in their adsorption capacities for the cellulases and their susceptibility to enzymatic attack have been identified. On the basis of a two-substrate hypothesis, mathematical models to describe enzyme adsorption and the kinetics of hydrolysis have been derived. A new nonequilibrium approach was chosen to predict cellulase-cellulose adsorption. A maximum binding capacity of 76 mg protein per gram substrate and a half-maximum saturation constant of 26 filter paper units (FPU) per gram substrate have been calculated, and a linear relationship of hydrolysis rate vs. adsorbed protein has been found. The fraction of substrate more easily hydrolyzed, as calculated from hydrolysis data, represents 19% of the total effective substrate concentration. This fraction is only slightly different from that of other celluloses and has been estimated to be 27% and 30% for NaOH- and H(3)PO(4)-swollen cellulose, respectively. The effective substrate concentration is equal to the maximum amount of the substrate which can be converted during exhaustive hydrolysis. This in turn is determined by the overall degradability of the substrate by the cellulases (85-90% for microcrystalline cellulose) and by the cellobiose concentration during hydrolysis. The kinetic model is based on a summation of two integrated first-order reactions with respect to the effective substrate concentration. Furthermore, it includes the principal factors influencing the reaction rates: the ratio of filter paper and beta-glucosidase units per gram substrate and the initial substrate concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号