首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Rhodamine 123, a laser dye, has been demonstrated to inhibit import of the precursor to pyridine dinucleotide transhydrogenase into mitochondria in rat liver cells. When rat hepatocytes were labeled with 35[S] methionine in the presence of 0.4 mM rhodamine 123, the precursor to transhydrogenase was found to have a half-life in the cytoplasm of 15 minutes as opposed to a half-life of 1-2 minutes when cells were radiolabeled in the absence of the dye. To clarify the mechanism of import inhibition, studies were initiated to assess the effect of rhodamine 123 on mitochondrial respiration. Upon addition of the dye to a mitochondrial suspension, respiration was initially enhanced, then inhibited. The inability of FCCP, a classical uncoupler, to enhance respiration during the inhibitory phase suggests that rhodamine 123 is primarily inhibiting respiration through the electron transport system rather than through the ATPase. These results suggest that rhodamine 123 may inhibit import of the transhydrogenase precursor into mitochondria by disrupting components in the mitochondrial membrane necessary for efficient import.  相似文献   

2.
A peptide corresponding to amino acids 1-27 of preornithine carbamyltransferase (pOCT) has been chemically synthesized. When added to energized mitochondria in vitro, 20 microM of the peptide, designated pO(1-27), resulted in a collapse of the electrochemical potential across the mitochondrial inner membrane. This effect on transmembrane potential was not observed, however, when pO(1-27) was added to energized mitochondria under conditions that support in vitro import of precursor proteins (i.e. in the presence of reticulocyte lysate). The latter finding, therefore, made possible an examination of the ability of pO(1-27) to block import of homologous and heterologous proteins into the organelle. At 5-10 microM, pO(1-27) prevented import of pOCT in vitro; inhibition was overcome by increasing the concentration of pOCT. In contrast, pO(16-27), a peptide corresponding to amino acids 16-27 of pOCT and exhibiting a charge:mass ratio similar to pO(1-27) had no such inhibitory effect. pO(1-27) blocked import of other unrelated precursor proteins destined either for the mitochondrial matrix (pre-malate dehydrogenase and a hybrid protein containing the signal sequence of pre-carbamyl phosphate synthetase) or for the mitochondrial inner membrane (pre-thermogenin).  相似文献   

3.
We have previously reported that the precursor of rat liver mitochondrial malate dehydrogenase, synthesized in vitro, is about 1,500 to 2,000 Mr larger than the mature enzyme and can be processed to the mature size by isolated mitochondria from Chinese hamster ovary cells (Chien, S.-M. and Freeman, K. B. (1984) J. Biol. Chem. 259, 3337-3342). Furthermore, binding, but not processing, was observed in the presence of an uncoupler. Binding was insensitive to temperature and was completed within 2.5 min at 0 degrees C. The role of binding in the overall process of import of the precursor is now further characterized. The precursor form, bound either in the presence of an uncoupler or at 0 degrees C, was sensitive to trypsin suggesting that binding occurs on the mitochondrial outer membrane. Saturation of binding was observed with a limited amount of mitochondria and an excess of in vitro translated rat liver proteins indicating that there is a finite number of binding sites. Furthermore, when the precursor was prebound to mitochondria at 0 degrees C for 5 min, the precursor was processed to the mature size and the rate of processing was independent of the volume of reaction mixture. In contrast, the rate of processing of unbound precursor was dependent on reaction volume. These results strongly suggest that binding of the precursor of malate dehydrogenase to the mitochondrial outer membrane is an intermediate step in its import.  相似文献   

4.
The positive charges and structural properties of the mitochondrial leader sequence of aldehyde dehydrogenase have been extensively studied in vitro. The results of these studies showed that increasing the helicity of this leader would compensate for reduced import from positive charge substitutions of arginine with glutamine or the insertion of negative charged residues made in the native leader. In this in vivo study, utilizing the green fluorescent protein (GFP) as a passenger protein, import results showed the opposite effect with respect to helicity, but the results from mutations made within the native leader sequence were consistent between the in vitro and in vivo experiments. Leader mutations that reduced the efficiency of import resulted in a cytosolic accumulation of a truncated GFP chimera that was fluorescent but devoid of a mitochondrial leader. The native leader efficiently imported before GFP could achieve a stable, import-incompetent structure, suggesting that import was coupled with translation. As a test for a co-translational mechanism, a chimera of GFP that contained the native leader of aldehyde dehydrogenase attached at the N terminus and a C-terminal endoplasmic reticulum targeting signal attached to the C terminus of GFP was constructed. This chimera was localized exclusively to mitochondria. The import result with the dual signal chimera provides support for a co-translational mitochondrial import pathway.  相似文献   

5.
Tom20 and Tom34 are mammalian liver proteins previously identified by others to be components of the mitochondrial import translocation apparatus. It has been shown that Tom20 interacts with the leader sequence of nuclear coded matrix space precursor proteins. Here we show with recombinantly expressed Tom proteins that Tom34 binds the mature portion of the precursor and not the leader. Both these Tom proteins inhibited the import of newly translated precursor of aldehyde dehydrogenase in an in vitro assay. Only Tom20 inhibited the import of a fusion protein of the leader of aldehyde dehydrogenase attached to dihydrofolate reductase. Antibodies against Tom20 coprecipitated both the precursor of aldehyde dehydrogenase (pALDH) and of dihydrofolate reductase (pA-DHFR). Antibodies against Tom34 interacted only when the mature portion of aldehyde dehydrogenase was present. Similar import inhibition patterns were found when other precursor and chimeric constructs we investigated. When Tom34-green fluorescence protein was transfected to HeLa cells it was observed that Tom34 was found through out the cell. It is concluded from our observation that Tom34 is a cytosolic protein, whose role appeared to be to interact with mature portion of some preproteins and may keep them in an unfolded, import compatible state.  相似文献   

6.
Mitochondrial precursor proteins synthesized in rabbit reticulocyte lysate (RRL) are readily imported into mitochondria, whereas the same precursors synthesized in wheat germ extract (WGE) fail to be imported. We have investigated factors that render import incompetence from WGE. A precursor that does not require addition of extramitochondrial ATP for import, the F(A)d ATP synthase subunit, is imported from WGE. Import of chimeric constructs between precursors of the F(A)d protein and alternative oxidase (AOX) with switched presequences revealed that the mature domain of the F(A)d precursor defines the import competence in WGE as only the construct containing the presequence of AOX and mature portion of F(A)d (pAOX-mF(A)d) could be imported. Import competence of F(A)d and pAOX-mF(A)d correlated with solubility of these precursors in WGE, however, solubilization of import-incompetent precursors with urea did not restore import competence. Addition of RRL to WGE-synthesized precursors did not stimulate import but addition of WGE to the RRL-synthesized precursors or to the over-expressed mitochondrial precursor derived from the F1beta ATP synthase precursor inhibited import into mitochondria. The dual-targeted glutathione reductase precursor synthesized in WGE was imported into chloroplasts, but not into mitochondria. Antibodies against the 14-3-3 guidance complex characterized for chloroplast targeting were able to immunoprecipitate all of the precursors tested except the F(A)d ATP synthase precursor. Our results point to the conclusion that the import incompetence of WGE-synthesized mitochondrial precursors is not presequence dependent and is a result of interaction of WGE inhibitory factors with the mature portion of precursor proteins.  相似文献   

7.
Abe Y  Shodai T  Muto T  Mihara K  Torii H  Nishikawa S  Endo T  Kohda D 《Cell》2000,100(5):551-560
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins with a cleavable N-terminal presequence and are imported into mitochondria. We report here the NMR structure of a general import receptor, rat Tom20, in a complex with a presequence peptide derived from rat aldehyde dehydrogenase. The cytosolic domain of Tom20 forms an all alpha-helical structure with a groove to accommodate the presequence peptide. The bound presequence forms an amphiphilic helical structure with hydrophobic leucines aligned on one side to interact with a hydrophobic patch in the Tom20 groove. Although the positive charges of the presequence are essential for import ability, presequence binding to Tom20 is mediated mainly by hydrophobic rather than ionic interactions.  相似文献   

8.
Various portions of the extension peptides of P-450(SCC) precursor were chemically synthesized. The effects of these peptides on the import of enzyme precursors into mitochondria were examined. Peptides SEP1-15 and SEP1-20, corresponding to the amino terminal portion of the extension peptides, strongly inhibited the import of P-450(SCC) precursor into mitochondria. These peptides were effective at concentrations above 30 microM, and complete inhibition was observed at 100 microM. SEP1-11, which is shorter than SEP1-15 and SEP1-20, showed very weak inhibition. SEP25-39, which corresponds to the carboxy terminal portion of the extension peptide, did not affect the import of the precursor. The import of P-450(11 beta) and adrenodoxin precursors were also inhibited by SEP1-15. Another peptide, AEP1-14, which corresponds to the amino terminal portion of the extension peptide of adrenodoxin precursor, was also synthesized. The peptide inhibited the import of both adrenodoxin and P-450(SCC) precursors into mitochondria. The import of malate dehydrogenase was also inhibited by SEP1-15 and AEP1-14. The rate of the internalization of the precursor into mitochondria was decreased by the peptides. The amount of the precursor bound to the surface of mitochondria and the processing of adrenodoxin precursor were not affected. The respiratory activities of isolated mitochondria were not influenced by SEP1-15 even at 100 microM. We conclude that the inhibitory activities of the synthetic partial extension peptides on the import of enzyme precursors into mitochondria require the presence of about fifteen amino acid residues in the amino terminal portion of the extension peptides, and the inhibition of the import by the peptides was dependent on the blockage of the internalization of the precursors into mitochondria.  相似文献   

9.
10.
Mitochondrial biogenesis is a crucial element of the functional maintenance of a eukaryotic cell. The organelle must import the majority of its proteins from the cytosol where they are synthesized as precursors. In vitro import assays have been developed in which isolated mitochondria are incubated with precursor proteins, that are generated either by in vitro translation systems or by expression and purification as recombinant proteins. The detection of imported proteins is performed by autoradiography or by Western blot. We have now established a novel detection system for imported precursor proteins that is based on fluorescent labeling. We constructed a mitochondrial preprotein containing a C-terminal SNAP-tag that can label itself with a single fluorescein molecule in an enzymatic reaction. The fluorescent preproteins were efficiently imported into isolated mitochondria and showed kinetic behavior similar to that of standard preproteins. The fluorescence detection was sensitive and significantly faster than other comparable procedures. We also showed that precursor proteins containing a SNAP-tag domain could be successfully labeled in a postimport reaction in intact mitochondria. In summary, the use of a reporter domain modified with a fluorescent dye provides a novel, sensitive, and fast detection method to analyze the properties of the mitochondrial import reaction in vitro.  相似文献   

11.
A cytosolic protein factor(s) is involved in the import of precursor proteins into mitochondria. PBF (presequence binding factor) is a protein factor which binds to the precursor form (pOTC) of rat ornithine carbamoyltransferase (OTC) but not to the mature OTC, and is required for the mitochondrial import of pOTC. The precursors for aspartate aminotransferase and malate dehydrogenase as well as pOTC synthesized in a reticulocyte lysate were efficiently imported into the mitochondria. However, the precursors synthesized in the lysate depleted for PBF by treatment with pOTC-Sepharose were not imported. Readdition of the purified PBF to the depleted lysate fully restored the import. pOTC synthesized in the untreated lysate sedimented as a complex with a broad peak of around 9 S, whereas pOTC synthesized in the PBF-depleted lysate sedimented at an expected position of monomer (2.5 S). When the purified PBF was readded to the depleted lysate, pOTC sedimented as a complex of about 7 S. In contrast to most mitochondrial proteins, rat 3-oxoacyl-CoA thiolase is synthesized with no cleavable presequence and an NH2-terminal portion of the mature protein functions as a mitochondrial import signal. The thiolase synthesized in the PBF-depleted lysate could be efficiently imported into the mitochondria, and readdition of PBF had little effect on the import. The thiolase synthesized in the untreated, the PBF-depleted, or the PBF-readded lysate sedimented at an expected position of monomer (2.5 S). These observations provide support for the existence of PBF-dependent and -independent pathways of mitochondrial protein import.  相似文献   

12.
13.
We have demonstrated that a synthetic peptide corresponding to the rat mitochondrial malate dehydrogenase (mMDH) transit peptide (TP-28) inhibits the binding of pre-mMDH to isolated mitochondria. Synthetic peptides derived from chloroplast transit peptide sequences, which have a similar net charge, did not inhibit import. In addition, this peptide (TP-28) inhibits import of ornithine transcarbamylase, another mitochondrial matrix protein, thus suggesting that common import pathways exist for both mMDH and ornithine transcarbamylase. A smaller synthetic peptide corresponding to residues 1-20 of the mMDH transit peptide (TP-20) also inhibits binding. However, several substitutions for leucine-13 in the smaller peptide relieve import inhibition, thus providing evidence that this neutral residue plays a crucial role in transit peptide binding to the mitochondrial surface. Proteolytic processing of pre-mMDH by a mitochondrial matrix fraction to both the mature and intermediate forms of mMDH was also inhibited by TP-28. The ability of synthetic peptides to inhibit distinct steps in the import of mitochondrial precursor proteins corresponds precisely to their ability to interact with the same components used by transit peptides on intact precursors. Furthermore, inhibition at multiple points along the import pathway reflects the functions of several independent structures contained within transit peptides.  相似文献   

14.
Formaldehyde can be metabolized primarily by two different pathways, one involving oxidation by the low-Km mitochondrial aldehyde dehydrogenase, the other involving a specific, glutathione-dependent, formaldehyde dehydrogenase. To estimate the roles played by each enzyme in formaldehyde metabolism by rat hepatocytes, experiments with acetaldehyde and cyanamide, a potent inhibitor of the low-Km aldehyde dehydrogenase were carried out. The glutathione-dependent oxidation of formaldehyde by 100,000g rat liver supernatant fractions was not affected by either acetaldehyde or by cyanamide. By contrast, the uptake of formaldehyde by intact mitochondria was inhibited 75 to 90% by cyanamide. Acetaldehyde inhibited the uptake of formaldehyde by mitochondria in a competitive fashion. Formaldehyde was a weak inhibitor of the oxidation of acetaldehyde by mitochondria, suggesting that, relative to formaldehyde, acetaldehyde was a preferred substrate. In isolated hepatocytes, cyanamide, which inhibited the oxidation of acetaldehyde by 75 to 90%, produced only 30 to 50% inhibition of formaldehyde uptake by cells as well as of the production of 14CO2 and of formate from [14C]formaldehyde. The extent of inhibition by cyanamide was the same as that produced by acetaldehyde (30-40%). In the presence of cyanamide, acetaldehyde was no longer inhibitory, suggesting that acetaldehyde and cyanamide may act at the same site(s) and inhibit the same formaldehyde-oxidizing enzyme system. These results suggest that, in rat hepatocytes, formaldehyde is oxidized by cyanamide- and acetaldehyde-sensitive (low-Km aldehyde dehydrogenase) and insensitive (formaldehyde dehydrogenase) reactions, and that both enzymes appear to contribute about equally toward the overall metabolism of formaldehyde.  相似文献   

15.
We have investigated the function of a leucine residue in the transit peptide of the rat mitochondrial malate dehydrogenase precursor using in vitro mutagenesis. Amino acid replacement of leucine 13 with glutamic acid and asparagine abolished import into mitochondria, while substitutions with proline, histidine, and arginine severely diminished uptake. In contrast, glutamine, tyrosine, valine, and alanine replacement resulted in normal levels of import, suggesting that there is a requirement for an uncharged residue at this position. Mutants involving rearrangements of the native sequence at positions 12-14 were imported as efficiently as the wild-type mitochondrial malate dehydrogenase, indicating that there was not an obligatory order of amino acid residues. However, deletion of leucine 13 resulted in diminished import. Binding studies with isolated mitochondria revealed that several position 13 mutants were deficient in binding to the mitochondrial surface, accounting for the reduced import of these proteins. This impairment could be distinguished from the effects due to decreased positive charge. We conclude that while translocation depends on the net positive charge, binding to the mitochondrial surface is mediated by uncharged residues within the transit peptides of mitochondrial precursor proteins.  相似文献   

16.
Rat liver cytosol contained an activity that stimulated the import of wheat germ lysate-synthesized precursor proteins into mitochondria. The activity was purified 10,000-fold from the cytosol as a homogeneous heterodimeric protein. This protein (termed mitochondrial import stimulation factor or MSF) stimulated the binding and import of mitochondrial precursor proteins. MSF was also found to recognize the presequence portion of mitochondrial precursors and catalyze the depolymerization and unfolding of in vitro synthesized mitochondrial precursor proteins in an ATP-dependent manner; in this connection, MSF exhibited ATPase activity depending on the important-incompetent mitochondrial precursor protein. The mitochondrial binding and import-stimulating activities were strongly inhibited by the pretreatment of MSF with NEM, whereas the ATP-dependent depolymerization activity was insensitive to the NEM treatment, suggesting that the process subsequent to the unfolding was inhibited with the NEM treatment. We conclude that MSF is a multifunctional cytoplasmic chaperone specific for mitochondrial protein import.  相似文献   

17.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 subunit of the ATP synthase (pF1) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondria than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 into intact mitochondria. Import of pF1 through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

18.
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.  相似文献   

19.
Protein import into mitochondria in a homologous yeast in vitro system   总被引:1,自引:0,他引:1  
To study the import of proteins into mitochondria we developed a homologous in vitro system in which mitochondria and cell-free translation extract are both derived from the yeast Saccharomyces cerevisiae. This system allows the synthesis of precursor proteins in the presence of isolated mitochondria and offers a means of analyzing yeast mutants defective in mitochondrial protein import. The in vitro import of an artificial precursor protein into yeast mitochondria in the presence of its substrate analog was analyzed subsequent to synthesis in either a yeast or rabbit reticulocyte cell-free translation reaction. Results suggest that a component(s) present in the yeast cytosolic extract may interact with the precursor protein.  相似文献   

20.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号