首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
Jung HJ  Kim S  Kim YJ  Kim MK  Kang SG  Lee JH  Kim W  Cha SS 《Molecules and cells》2012,33(2):163-171
The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson’s disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I-IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces.  相似文献   

4.
The expression level of protein DR1199 is observed to increase considerably in the radio-resistant bacterium Deinococcus radiodurans following irradiation. This protein belongs to the DJ-1 superfamily, which includes proteins with diverse functions, such as the archaeal proteases PhpI and PfpI, the bacterial chaperone Hsp31 and hyperosmotic stress protein YhbO, and the human Parkinson's disease-related protein DJ-1. All members of the superfamily are oligomeric, and the oligomerization interface varies from protein to protein. Although for many of these proteins, their function remains obscure, most of them are involved in cellular protection against environmental stresses. We have determined the structure of DR1199 to a resolution of 2.15 A, and we have tested its function and studied its role in the response to irradiation and more generally to oxidative stress in D. radiodurans. The protein is a dimer displaying an oligomerization interface similar to that observed for the YhbO and PhpI proteins. The cysteine in the catalytic triad (Cys 115) is oxidized in our structure, similar to modifications seen in the corresponding cysteine of the DJ-1 protein. The oxidation occurs spontaneously in DR1199 crystals. In solution, no proteolytic or chaperone activity was detected. On the basis of our results, we suggest that DR1199 might work as a general stress protein involved in the detoxification of the cell from oxygen reactive species, rather than as a peptidase in D. radiodurans.  相似文献   

5.
DJ-1, a Parkinson''s disease (PD)–associated gene, has been shown to protect against oxidative stress in Drosophila. However, the molecular mechanism underlying oxidative stress-induced phenotypes, including apoptosis, locomotive defects, and lethality, in DJ-1-deficient flies is not fully understood. Here we showed that Daxx-like protein (DLP), a Drosophila homologue of the mammalian Death domain-associated protein (Daxx), was upregulated under oxidative stress conditions in the loss-of-function mutants of Drosophila DJ-1β, a Drosophila homologue of DJ-1. DLP overexpression induced apoptosis via the c-Jun N-terminal kinase (JNK)/Drosophila forkhead box subgroup O (dFOXO) pathway, whereas loss of DLP increased resistance to oxidative stress and UV irradiation. Moreover, the oxidative stress-induced phenotypes of DJ-1β mutants were dramatically rescued by DLP deficiency, suggesting that enhanced expression of DLP contributes to the DJ-1β mutant phenotypes. Interestingly, we found that dFOXO was required for the increase in DLP expression in DJ-1β mutants and that dFOXO activity was increased in the heads of DJ-1β mutants. In addition, subcellular localization of DLP appeared to be influenced by DJ-1 expression so that cytosolic DLP was increased in DJ-1β mutants. Similarly, in mammalian cells, Daxx translocation from the nucleus to the cytosol was suppressed by overexpressed DJ-1β under oxidative stress conditions; and, furthermore, targeted expression of DJ-1β to mitochondria efficiently inhibited the Daxx translocation. Taken together, our findings demonstrate that DJ-1β protects flies against oxidative stress- and UV-induced apoptosis by regulating the subcellular localization and gene expression of DLP, thus implying that Daxx-induced apoptosis is involved in the pathogenesis of DJ-1-associated PD.  相似文献   

6.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin -/- DJ-1 -/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.  相似文献   

7.
Parkinson's disease is the most common movement disorder characterized by dopaminergic dysfunction and degeneration. Loss-of-function mutations in the DJ-1 gene have been linked to autosomal recessive forms of early-onset familial Parkinson's disease. DJ-1 is thought to play roles in protection of cells against oxidative stress and in maintenance of the normal dopaminergic function in the nigrostriatal pathway. Here we investigate the consequence of both DJ-1 inactivation and aging in mice. We found that DJ-1-/- mice at the age of 24–27 months have normal numbers of dopaminergic neurons in the substantia nigra and normal levels of dopamine and its major metabolites in the striatum. The number of noradrenergic neurons in the locus coeruleus is also unchanged in DJ-1-/- mice. Moreover, there is no accumulation of oxidative damage or inclusion bodies in aged DJ-1-/- brains. Together, these results indicate that loss of DJ-1 function alone is insufficient to cause nigral degeneration and oxidative damage in the life span of mice.  相似文献   

8.

Background

Loss of function mutations in the DJ-1 gene have been linked to recessively inherited forms of Parkinsonism. Mitochondrial dysfunction and increased oxidative stress are thought to be key events in the pathogenesis of Parkinson’s disease. Although it has been reported that DJ-1 serves as scavenger for reactive oxidative species (ROS) by oxidation on its cysteine residues, how loss of DJ-1 affects mitochondrial function is less clear.

Methodology/Principal Findings

Using primary mouse embryonic fibroblasts (MEFs) or brains from DJ-1−/− mice, we found that loss of DJ-1 does not affect mitochondrial respiration. Specifically, endogenous respiratory activity as well as basal and maximal respiration are normal in intact DJ-1−/− MEFs, and substrate-specific state 3 and state 4 mitochondrial respiration are also unaffected in permeabilized DJ-1−/− MEFs and in isolated mitochondria from the cerebral cortex of DJ-1−/− mice at 3 months or 2 years of age. Expression levels and activities of all individual complexes composing the electron transport system are unchanged, but ATP production is reduced in DJ-1−/− MEFs. Mitochondrial transmembrane potential is decreased in the absence of DJ-1. Furthermore, mitochondrial permeability transition pore opening is increased, whereas mitochondrial calcium levels are unchanged in DJ-1−/− cells. Consistent with earlier reports, production of reactive oxygen species (ROS) is increased, though levels of antioxidative enzymes are unaltered. Interestingly, the decreased mitochondrial transmembrane potential and the increased mitochondrial permeability transition pore opening in DJ-1−/− MEFs can be restored by antioxidant treatment, whereas oxidative stress inducers have the opposite effects on mitochondrial transmembrane potential and mitochondrial permeability transition pore opening.

Conclusions/Significance

Our study shows that loss of DJ-1 does not affect mitochondrial respiration or mitochondrial calcium levels but increases ROS production, leading to elevated mitochondrial permeability transition pore opening and reduced mitochondrial transmembrane potential.  相似文献   

9.
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson''s disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.  相似文献   

10.
11.
Pancreatic β-cells are vulnerable to multiple stresses, leading to dysfunction and apoptotic death. Deterioration in β-cells function and mass is associated with type 2 diabetes. Comparative two-dimensional gel electrophoresis from pancreatic MIN6 cells that were maintained at varying glucose concentrations was carried out. An induced expression of a protein spot, detected in MIN6 cells experiencing high glucose concentration, was identified by mass spectrometry as the oxidized form of DJ-1. DJ-1 (park7) is a multifunctional protein implicated in familial Parkinsonism and neuroprotection in response to oxidative damage. The DJ-1 protein and its oxidized form were also induced following exposure to oxidative and endoplasmic reticulum stress in MIN6 and βTC-6 cells and also in mouse pancreatic islets. Suppression of DJ-1 levels by small interfering RNA led to an accelerated cell death, whereas an increase in DJ-1 levels by adenovirus-based infection attenuated cell death induced by H2O2 and thapsigargin in β-cell lines and mouse pancreatic islets. Furthermore, DJ-1 improved regulated insulin secretion under basal as well as oxidative and endoplasmic reticulum stress conditions in a dose-dependent manner. We identified TFII-I (Gtf2i) as DJ-1 partner in the cytosol, whereas the binding of TFII-I to DJ-1 prevented TFII-I translocation to the nucleus. The outcome was attenuation of the stress response. Our results suggest that DJ-1 together with TFII-I operate in concert to cope with various insults and to sustain pancreatic β-cell function.  相似文献   

12.
Genomics has posed the challenge of determination of protein function from sequence and/or 3-D structure. Functional assignment from sequence relationships can be misleading, and structural similarity does not necessarily imply functional similarity. Proteins in the DJ-1 family, many of which are of unknown function, are examples of proteins with both sequence and fold similarity that span multiple functional classes. THEMATICS (theoretical microscopic titration curves), an electrostatics-based computational approach to functional site prediction, is used to sort proteins in the DJ-1 family into different functional classes. Active site residues are predicted for the eight distinct DJ-1 proteins with available 3-D structures. Placement of the predicted residues onto a structural alignment for six of these proteins reveals three distinct types of active sites. Each type overlaps only partially with the others, with only one residue in common across all six sets of predicted residues. Human DJ-1 and YajL from Escherichia coli have very similar predicted active sites and belong to the same probable functional group. Protease I, a known cysteine protease from Pyrococcus horikoshii, and PfpI/YhbO from E. coli, a hypothetical protein of unknown function, belong to a separate class. THEMATICS predicts a set of residues that is typical of a cysteine protease for Protease I; the prediction for PfpI/YhbO bears some similarity. YDR533Cp from Saccharomyces cerevisiae, of unknown function, and the known chaperone Hsp31 from E. coli constitute a third group with nearly identical predicted active sites. While the first four proteins have predicted active sites at dimer interfaces, YDR533Cp and Hsp31 both have predicted sites contained within each subunit. Although YDR533Cp and Hsp31 form different dimers with different orientations between the subunits, the predicted active sites are superimposable within the monomer structures. Thus, the three predicted functional classes form four different types of quaternary structures. The computational prediction of the functional sites for protein structures of unknown function provides valuable clues for functional classification.  相似文献   

13.
14.

Background

Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson''s disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.

Methodology/Principal Findings

Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2.

Conclusions/Significance

We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson''s disease.  相似文献   

15.
DJ-1 has a role in antioxidative stress to prevent cell death   总被引:12,自引:0,他引:12       下载免费PDF全文
Deletion and point (L166P) mutations of DJ-1 have recently been shown to be responsible for the onset of familial Parkinson's disease (PD, PARK7). The aim of this study was to determine the role of DJ-1 in PD. We first found that DJ-1 eliminated hydrogen peroxide in vitro by oxidizing itself. We then found that DJ-1 knockdown by short interfering RNA rendered SH-SY5Y neuroblastoma cells susceptible to hydrogen peroxide-, MPP+- or 6-hydroxydopamine-induced cell death and that cells harbouring mutant forms of DJ-1, including L166P, became susceptible to death in parallel with the loss of oxidized forms of DJ-1. These results clearly showed that DJ-1 has a role in the antioxidative stress reaction and that mutations of DJ-1 lead to cell death, which is observed in PD.  相似文献   

16.
DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.  相似文献   

17.
18.
A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson’s disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.  相似文献   

19.
Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson''s disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.  相似文献   

20.
We previously found that DJ-1 protein of pI 5.8 (DJ-1/5.8) increased on 2D gels as DJ-1 of pI 6.2 (DJ-1/6.2) decreased, upon exposure of human cells to sublethal levels of oxidative stress, such as H2O2 and paraquat. Here, we show that the DJ-1/5.8 increases concomitantly with endogenous production of reactive oxygen species (ROS) under endotoxin-induced inflammatory conditions. Lipopolysaccharide (LPS) significantly increased the expression of DJ-1/5.8 in murine peritoneal macrophages (MΦ) and a murine macrophage cell line (J774). Diphenylene iodonium, a flavoenzyme inhibitor, blocked the effect of LPS on DJ-1/5.8 expression. Aminoguanidine (AG), a selective inhibitor of type II nitric oxide synthase, had no effect on the DJ-1/5.8 expression, but suppressed accumulation of nitrite in the culture medium after LPS treatment. We also examined the expression of DJ-1/5.8 in lung, since acute lung injury is seen in endotoxin shock. When female mice (6-weeks old) were intraperitoneally given LPS (10 mg/kg), myeloperoxidase (MPO) activity in lung, a marker of neutrophil infiltration, was transiently raised by 3.5 fold. The expression of DJ-1/5.8 in lung was enhanced and then reverted to the control level, in parallel with the MPO activity. These results, taken together, suggest that the DJ-1/5.8 might increase in response to endogenously produced ROS, probably due to activation of NADPH oxidase, and imply that DJ-1 may be useful as an endogenous indicator of oxidative stress status in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号